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options(width=100)
if(!require("knitr")) install.packages("knitr")
library("knitr")
#getOption("width")
knitr::opts_chunk$set(comment=NA,echo = TRUE, cache=TRUE)

Introduction to Deep Neural Networks

Overview of Deep Learning

Historical Background and Key Milestones

Today, in April 2023, our world is convulsed by the explosion of Artificial Intelligence.

Although it has been growing steadily, it has probably been in the last months (weeks), since
ChatGPT has arrived, that everybody has an opinion, or a fear on the topic.

While we are not going to discuss ethical, technological or sociological aspects, what seems
clear to the data scientist’s eye is that “most of this is about prediction”.

Most AI engines rely on powerful prediction systems that use statistical learning methods.
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Deep learning is a highly successful model in the field of AI, which has powered numerous
applications in various domains. It has shown remarkable performance in tasks such as
image recognition, natural language processing, and speech recognition.

Deep learning extends the basic principles of artificial neural networks by introducing more
complex architectures and algorithms and, at the same time, by enabling machines to learn
from large datasets by automatically identifying relevant patterns and features without ex-
plicit programming.

One key advantage of deep learning over traditional machine learning algorithms is its ability
to handle high-dimensional and unstructured data such as images, videos, and audio.

The early history of artificial [neural networks]/intelligence

Figure 1: A Brief History of AI from 1940s till Today

The origins of AI, and as such of DL can be traced almost one century backwards. While
it is an interesting, or even fascinating, history wee don’t go into it (see a summary in A
Quick History of AI, ML and DL

We can see there however, several hints worth to account for because we will go through
them to understand how a deep neural network works. These are:

• The Perceptron and the first Artificial Neural Network where the basic building
block was introduced.
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Figure 2: The origins of Deep learning and modern Artificial Intelligence can be traced back
to the per4ceptron. Source: “A Quick History of AI, ML and DL”

• The Multilayered perceptron and backpropagation where complex architechtures
were suggested to improve the capabilities.

• Deep Neural Networks, with many hidden layers, and auto-tunability capabilities.

In short, there has been an mathematical and a technological evolution that at some point
has allowed to meet with

• The required theoretical background (DNN)

• The required computational capabilities (GPU, HPC)

• The required quantity of data (Big Data, Images, Social Networks)

This has resulted in making artificial intelligence widely accessible to businesses, researchers,
and the general public.
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Source: Alex Amini’s ‘MIT Introduction to Deep Learning’ course (introtodeeplearn-
ing.com)

Success stories such as

• the development of self-driving cars,

• the use of AI in medical diagnosis, and

• the creation of personalized recommendations in online shopping

have also contributed to the widespread adoption of AI.

Comparison with Traditional Machine Learning

A reasonable question is “how are ArtificiaI Intelligence, Machine Learning and Deep learn-
ing related”?

A standard answer can be found in the image below that has a myriad variations:

knitr::include_graphics("images/AI-ML-DL-1.jpg")
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We can keep three definitions:

• Artificial intelligence is the ability of a computer to perform tasks commonly associated
with intelligent beings.

• Machine learning is the study of algorithms that learn from examples and experience
instead of relying on hard-coded rules and make predictions on new data

• Deep learning is a subfield of machine learning focusing on learning data representa-
tions as successive successive layers of increasingly meaningful representations.

knitr::include_graphics("images/ML_vs_DL-2.png")
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We will be coming back to the difference between ML and DL, but two strengths of DL that
differentiate it from ML should be clear from the beginning:

• DNN combine feature extraction and classification in a way that does not require (or
dramatically decreases) human intervention.

• The power of DNN requires in its ability to improve with data availability, without
seemingly reaching plateaus as ML.

Deep learning is having a strong impact

• Near-human-level image classification

• Near-human-level speech transcription

• Near-human-level handwriting transcription

• Dramatically improved machine translation

• Dramatically improved text-to-speech conversion
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Figure 3: An illustration of the performance comparison between deep learning (DL) and
other machine learning (ML) algorithms, where DL modeling from large amounts
of data can increase the performance

• Digital assistants such as Google Assistant and Amazon Alexa

• Near-human-level autonomous driving

• Improved ad targeting, as used by Google, Baidu, or Bing

• Improved search results on the web

• Ability to answer natural language questions

• Superhuman Go playing

According to [@chollet2022] … “we shouldn’t believe the short-term hype, but should believe
in the long-term vision. It may take a while for AI to be deployed to its true potential—a
potential the full extent of which no one has yet dared to dream—but AI is coming, and it
will transform our world in a fantastic way”.

Once the introduction is ready we con move onto the building blocks of neural networks,
perceptrons.
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Artificial Neural Networks

The perceptron, the building block

The perceptron, was introduced by Rosenblatt (one version of the perceptron at least), as a
mathematical model that might emulate a neuron.

The idea is: how can we produce a model that given some inputs, and an appropriate set of
examples, learn to produce the desired output?

The first computational model of a neuron was proposed by Warren MuCulloch (neurosci-
entist) and Walter Pitts (logician) in 1943.

It may be divided into 2 parts. The first part, 𝑔,takes an input (ahem dendrite ahem),
performs an aggregation and based on the aggregated value the second part, 𝑓 , makes a
decision. See the source of this picture for an illustration on how this can be used to emulate
logical operations such as AND, OR or NOT, but not XOR.

This first attempt to emulate neurons succeeded but with limitations:

• What about non-boolean (say, real) inputs?

• What if all inputs are not equal?

• What if we want to assign more importance to some inputs?

• What about functions which are not linearly separable? Say XOR function

To overcome these limitations Frank Rosenblatt, an American psychologist, proposed the
classical perception model, the artificial neuron, in 1958. It is more generalized computa-
tional model than the McCulloch-Pitts neuron where weights and thresholds can be learnt
over time.
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The perceptron proposed by Rosenblatt this is very similar to an M-P neuron but we take
a weighted sum of the inputs and set the output as one only when the sum is more than an
arbitrary threshold (theta).

Additionally, instead of hand coding the thresholding parameter 𝜃, we add it as one of the
inputs, with the weight 𝑤0 = −𝜃 like shown below, which makes it learnable.

Now, while this is an improvement (because both the weights and the threshold can be
learned and the inputs can be real values) there is still a drawback in that a single perceptron
can only be used to implement linearly separable functions.

Artificial Neural Networks improve on this by introducing Activation Functions which, even-
tually, can be non-linear.
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Neurons and Activation Functions

An activation function is a function that is added into an artificial neurone in order to help
it learn complex patterns in the data.

How come biological and artificial neurons come to compare?

Biological neurons are specialized cells in the central nervous system that transmit electrical
and chemical signals to communicate with each other and the rest of the body.

On the other hand, artificial neurons are mathematical models used in neural networks to
process information.

In both biological and artificial neurons, the activation function is what is responsible for
deciding whether the neuron activates or not based on the input it receives.

• In the case of a biological neuron, the activation function is based on the release of
neurotransmitters, which are chemical substances that transmit signals between nerve
cells. When the electrical signal reaching the neuron exceeds a certain threshold, the
neuron releases neurotransmitters, which are received by other neurons or cells in the
body to continue the communication process.

• On the other hand, in an artificial neuron, the activation function is a mathematical
function applied to the neuron’s input to produce an output. Like in the biological
neuron, this activation function decides whether the neuron activates or not based on
the input it receives.

knitr::include_graphics("images/ActivationFunction0.png")
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Read more here about activation functions.

With all these inputs in mind we can now define an Artificial Neuron as a computational
unit that - takes as input 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) (𝑥0 = +1, called bias), and - outputs ℎ𝜃(𝑥) =
𝑓(𝜃⊺𝑥) = 𝑓(∑𝑖 𝜃𝑖𝑥𝑖), - where 𝑓 ∶ ℝ ↦ ℝ is called the activation function.

The goal of the activation function is to provide the Neuron with the capability of producing
the required outputs.

For instance, if the output has to be a probability, the activation function will only produce
values between 0 and 1.

With this idea in mind activation functions are chosen from a set of pre-defined functions:

• the sigmoid function:
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𝑓(𝑧) = 1
1 + 𝑒−𝑧

• the hyperbolic tangent, or tanh, function:

𝑓(𝑧) = 𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

The tanh(z) function is a rescaled version of the sigmoid, and its output range is [−1, 1]
instead of [0, 1].
Two useful properties to recall are that: - If 𝑓(𝑧) = 1/(1 + 𝑒𝑧) is the sigmoid function, then
its derivative is given by 𝑓 ′(𝑧) = 𝑓(𝑧)(1 − 𝑓(𝑧)).

• Similarly, if 𝑓 is the tanh function, then its derivative is given by 𝑓 ′(𝑧) = 1 − (𝑓(𝑧))2.

• In modern neural networks, the default recommendation is to use the rectified linear
unit or ReLU defined by the activation function 𝑓(𝑧) = max{0, 𝑧}.

This function remains very close to a linear one, in the sense that is a piecewise linear
function with two linear pieces.

Because rectified linear units are nearly linear, they preserve many of the properties that
make linear models easy to optimize with gradient based methods.

They also preserve many of the properties that make linear models generalize well.

.

Putting alltogether we have the following schematic representation of an artificial neuron
where Σ = ⟨𝑤𝑗, 𝑥⟩ + 𝑏𝑗 and ⟨𝑤𝑗, 𝑥⟩ represents the dot product between vectors 𝑤 and 𝑥.
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Multilayer perceptrons

A multilayer perceptron (or Artificial neural network) is a structure composed by several
hidden layers of neurons where the output of a neuron of a layer becomes the input of a
neuron of the next layer.

Moreover, the output of a neuron can also be the input of a neuron of the same layer or
of neuron of previous layers (this is the case for recurrent neural networks). On last layer,
called output layer, we may apply a different activation function as for the hidden layers
depending on the type of problems we have at hand : regression or classification.

The Figure below represents a neural network with three input variables, one output variable,
and two hidden layers.

knitr::include_graphics("images/MultiLayer1.png")
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Multilayers perceptrons have a basic architecture since each unit (or neuron) of a layer is
linked to all the units of the next layer but has no link with the neurons of the same layer.

The parameters of the architecture are:

• the number of hidden layers and
• the number of neurons in each layer.

The activation functions are also to choose by the user. For the output layer, as mentioned
previously, the activation function is generally different from the one used on the hidden
layers. For example:.

• For regression, we apply no activation function on the output layer.
• For binary classification, the output gives a prediction of ℙ(𝑌 = 1/𝑋) since this value

is in [0, 1] and the sigmoid activation function is generally considered.
• For multi-class classification, the output layer contains one neuron per class (i), giving

a prediction of ℙ(𝑌 = 𝑖/𝑋). The sum of all these values has to be equal to 1. The
sum of all these values has to be equal to 1.

– A common choice for multi-class ANN is the softmax activation function:

softmax(𝑧)𝑖 = exp (𝑧𝑖)
∑𝑗 exp (𝑧𝑗)

An example

In this example we train and use a “shallow neural network”, called this way in contrast
with “deep neural networks”.
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We will use the neuralnet R package, which is not intended to work with deep neural
networks, to build a simple neural network to predict if a type of stock pays dividends or
not.

if (!require(neuralnet))
install.packages("neuralnet", dep=TRUE)

if (!require(caret))
install.packages("caret", dep=TRUE)

The data for the example are the dividendinfo.csv dataset, available from: https://gith
ub.com/MGCodesandStats/datasets

mydata <- read.csv("https://raw.githubusercontent.com/MGCodesandStats/datasets/master/dividendinfo.csv")
str(mydata)

'data.frame': 200 obs. of 6 variables:
$ dividend : int 0 1 1 0 1 1 1 0 1 1 ...
$ fcfps : num 2.75 4.96 2.78 0.43 2.94 3.9 1.09 2.32 2.5 4.46 ...
$ earnings_growth: num -19.25 0.83 1.09 12.97 2.44 ...
$ de : num 1.11 1.09 0.19 1.7 1.83 0.46 2.32 3.34 3.15 3.33 ...
$ mcap : int 545 630 562 388 684 621 656 351 658 330 ...
$ current_ratio : num 0.924 1.469 1.976 1.942 2.487 ...

Data preprocessing

One of the most important procedures when forming a neural network is data normalization.
This involves adjusting the data to a common scale so as to accurately compare predicted
and actual values. Failure to normalize the data will typically result in the prediction value
remaining the same across all observations, regardless of the input values.

We can do this in two ways in R:

• Scale the data frame automatically using the scale function in R
• Transform the data using a max-min normalization technique

In this example We implement the max-min normalization technique.

See this link for further details on how to use the normalization function.

normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))

}
normData <- as.data.frame(lapply(mydata, normalize))
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As usually, the dataset is separated in a training and a test set. The training set contains a
random selection with and (arbitrary) 66% of the observations.

perc2Train <- 2/3
ssize <- nrow(normData)
set.seed(12345)
data_rows <- floor(perc2Train *ssize)
train_indices <- sample(c(1:ssize), data_rows)
trainset <- normData[train_indices,]
testset <- normData[-train_indices,]

The trainset set will be used to train the network and the testset set one will be used to
evaluate it.

Training a neural network

Setting the parameters of a neural network requires experience and understanding of their
meaning, and even so, canges in the parameters can lead to similar results.

We create a simple NN with two hidden layers, with 3 and 2 neurons respectively. This is
specified in the hidden parameter. For other parameters see the package help.

# Neural Network
library(neuralnet)
nn <- neuralnet(dividend ~ fcfps + earnings_growth + de + mcap + current_ratio,

data=trainset,
hidden=c(3,2),
linear.output=FALSE,
threshold=0.01)

The output of the procedure is a neural network with estimated weights.

This can be seen with a plot function (including the rep argument).

plot(nn, rep = "best")
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The object nncontains information the weights and the results although it is not particularly
clear or useful.

summary(nn)

Length Class Mode
call 6 -none- call
response 133 -none- numeric
covariate 665 -none- numeric
model.list 2 -none- list
err.fct 1 -none- function
act.fct 1 -none- function
linear.output 1 -none- logical
data 6 data.frame list
exclude 0 -none- NULL
net.result 1 -none- list
weights 1 -none- list
generalized.weights 1 -none- list
startweights 1 -none- list
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result.matrix 32 -none- numeric

nn$result.matrix

[,1]
error 5.096531e-01
reached.threshold 9.874263e-03
steps 1.798000e+04
Intercept.to.1layhid1 -1.243872e+00
fcfps.to.1layhid1 -1.349137e-01
earnings_growth.to.1layhid1 3.151554e+00
de.to.1layhid1 -5.249806e+00
mcap.to.1layhid1 9.908495e-01
current_ratio.to.1layhid1 6.527535e+00
Intercept.to.1layhid2 1.660208e+00
fcfps.to.1layhid2 -2.401517e-01
earnings_growth.to.1layhid2 -1.385771e+00
de.to.1layhid2 7.682849e-01
mcap.to.1layhid2 -4.058053e+00
current_ratio.to.1layhid2 -2.855816e+00
Intercept.to.1layhid3 2.982002e+00
fcfps.to.1layhid3 -2.877651e+00
earnings_growth.to.1layhid3 -6.957763e-02
de.to.1layhid3 -2.965334e+00
mcap.to.1layhid3 -5.034300e+00
current_ratio.to.1layhid3 -1.086037e+00
Intercept.to.2layhid1 9.282087e-02
1layhid1.to.2layhid1 -2.341614e+00
1layhid2.to.2layhid1 3.001315e+00
1layhid3.to.2layhid1 5.107051e+00
Intercept.to.2layhid2 -4.188729e-02
1layhid1.to.2layhid2 3.029232e+00
1layhid2.to.2layhid2 -4.732821e+00
1layhid3.to.2layhid2 -9.017001e+00
Intercept.to.dividend -3.761263e-01
2layhid1.to.dividend -3.054146e+02
2layhid2.to.dividend 1.494655e+02

Model evaluation

A prediction for each value in the testset dataset can be built with the compute function.
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#Test the resulting output
temp_test <- subset(testset, select =

c("fcfps","earnings_growth",
"de", "mcap", "current_ratio"))

head(temp_test)

fcfps earnings_growth de mcap current_ratio
9 0.4929006 0.52417860 0.7862595 0.79741379 0.662994637
19 0.8722110 0.89705139 0.5190840 0.31465517 0.631284474
22 0.0811359 0.68272957 0.4554707 0.05747126 0.000785556
26 0.4077079 0.07649537 0.6310433 0.70977011 0.379642293
27 0.4279919 0.70362258 0.1882952 0.30603448 0.628283435
29 0.3509128 0.74203875 0.6030534 0.53017241 0.543404499

nn.results <- compute(nn, temp_test)
results <- data.frame(actual =

testset$dividend,
prediction = nn.results$net.result)

head(results)

actual prediction
9 1 1.000000e+00
19 1 1.000000e+00
22 0 5.442517e-133
26 0 6.801894e-35
27 1 4.548179e-10
29 1 1.000000e+00

A confusion matrix can be built to evaluate the predictive ability of the network:

roundedresults<-sapply(results,round,digits=0)
roundedresultsdf=data.frame(roundedresults)
attach(roundedresultsdf)
confMat<- caret::confusionMatrix(table(actual, prediction))
confMat

Confusion Matrix and Statistics

prediction
actual 0 1

0 34 2
1 6 25
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Accuracy : 0.8806
95% CI : (0.7782, 0.947)

No Information Rate : 0.597
P-Value [Acc > NIR] : 3.405e-07

Kappa : 0.7577

Mcnemar's Test P-Value : 0.2888

Sensitivity : 0.8500
Specificity : 0.9259

Pos Pred Value : 0.9444
Neg Pred Value : 0.8065

Prevalence : 0.5970
Detection Rate : 0.5075

Detection Prevalence : 0.5373
Balanced Accuracy : 0.8880

'Positive' Class : 0

Some mathematics behind ANN

Mathematical formulation

• An ANN is a predictive model whose functioning and properties can be mathematically
characterized.

• In practice this means describing

– The ANN as a (non linear) function.
– The (optimization) process for estimating the weights.

• Estimation is done by minimizing an appropriate loss function which requires

– An appropriate procedure: gradient based optimization
– A method for computing the required derivatives: back-propagation.

Mathematical formulation of the ANN

We will use a concrete model to explain the concepts, which can be easily generalized to
more neurons and layers.

Consider the following simple ANN:
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Consider the following ANN:

knitr::include_graphics("images/nn.jpg")

• The circles labeled +1 are called bias units, and correspond to the intercept, here
named bias term.

• The leftmost layer of the network is called the input layer.
• The rightmost layer is the output layer (which, in this example, has only one node).
• The middle layer(s) is(are) called the hidden layer(s), because its values are not ob-

served in the training set.

So our example network has:

• The input layer with 3 input units (not counting the bias unit),
• 1 hidden layer with 3 hidden units, and
• The output layer with 1 output unit.

A logistic regression ANN

This ANN can be use to build a logistic regression model:
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• From input layer to layer 2: non-linear transformation –> new set of complex features.

• From layer 2 to output layer use a sigmoid activation function to produce the following
output from the set of complex features.

The output is: ℎ𝜃(𝑥) = 1
1 + 𝑒−𝜃⊺𝑥

Recall that, the logistic regression model is:

log 𝑝(𝑌 = 1|𝑥)
1 − 𝑝(𝑌 = 1|𝑥) = 𝜃⊺𝑥

Isolating 𝑝(𝑌 = 1|𝑥) and taking logs in both sides, we have:

𝑝(𝑌 = 1|𝑥)
1 − 𝑝(𝑌 = 1|𝑥) = 𝑒𝜃⊺𝑥

Thus
𝑝(𝑌 = 1|𝑥) = 𝑒𝜃⊺𝑥

1 + 𝑒𝜃⊺𝑥 = 1
1 + 𝑒−𝜃⊺𝑥

That is, when the activation function of the output node is the sigmoid activation function,
the output coincides with a logistic regression on complex features

• And, with ℎ𝜃(𝑥), the output of the NN, we are estimating 𝑝(𝑌 = 1|𝑥).

Parametrizing an ANN

• Let 𝑛𝑙 denote the number of layers in our network, thus 𝑛𝑙 = 3 in our example.

• Label layer 𝑙 as 𝐿𝑙, so layer 𝐿1 is the input layer, and layer 𝐿𝑛𝑙
= 𝐿3 the output layer.

• Our neural network has parameters: Θ = (Θ(1), Θ(2)), where we will write 𝜃(𝑙)
𝑖𝑗 to denote

the parameter (or weight) associated with the connection between unit 𝑗 in layer 𝑙, and
unit 𝑖 in layer 𝑙 + 1.

• Thus, in our example, we have:

– Θ(1) ∈ ℝ3×4, and
– Θ(2) ∈ ℝ1×4.
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Note that bias units don’t have inputs or connections going into them, since they always
output the value +1.

We also let 𝑠𝑙 denote the number of nodes in layer 𝑙 (not counting the bias unit).

Now, write 𝑎(𝑙)
𝑖 to denote the activation (meaning output value) of unit 𝑖 in layer 𝑙.

For 𝑙 = 1, we also use 𝑎(1)
𝑖 = 𝑥𝑖 to denote the 𝑖-th input.

Given a fixed setting of the parameters Θ, our neural network defines a model ℎΘ(𝑥) that
outputs a real number.

We can now see how these weights are used to produce the output:

given by:

𝑎(2)
1 = 𝑓(𝜃(1)

10 + 𝜃(1)
11 𝑥1 + 𝜃(1)

12 𝑥2 + 𝜃(1)
13 𝑥3) (1)

𝑎(2)
2 = 𝑓(𝜃(1)

20 + 𝜃(1)
21 𝑥1 + 𝜃(1)

22 𝑥2 + 𝜃(1)
23 𝑥3) (2)

𝑎(2)
3 = 𝑓(𝜃(1)

30 + 𝜃(1)
31 𝑥1 + 𝜃(1)

32 𝑥2 + 𝜃(1)
33 𝑥3) (3)

ℎΘ(𝑥) = 𝑎(3)
1 = 𝑓(𝜃(2)

10 + 𝜃(2)
11 𝑎(2)

1 + 𝜃(2)
12 𝑎(2)

2 + 𝜃(2)
13 𝑎(2)

3 ) (4)

Now, letting 𝑧(𝑙)
𝑖 denote the total weighted sum of inputs to unit 𝑖 in layer 𝑙, including the

bias term
𝑧(2)

𝑖 = 𝜃(1)
𝑖0 + 𝜃(1)

𝑖1 𝑥1 + 𝜃(1)
𝑖2 𝑥2 + 𝜃(1)

𝑖3 𝑥3,

the output becomes: 𝑎(𝑙)
𝑖 = 𝑓(𝑧(𝑙)

𝑖 ).

Compacting notation

• Note that this easily lends itself to a more compact notation.

• Extending the activation function 𝑓(⋅) to apply to vectors in an elementwise fashion:

𝑓([𝑧1, 𝑧2, 𝑧3]) = [𝑓(𝑧1), 𝑓(𝑧2), 𝑓(𝑧3)],

then we can write the previous equations more compactly as:

𝑧(2) = Θ(1)𝑥
𝑎(2) = 𝑓(𝑧(2))
𝑧(3) = Θ(2)𝑎(2)

ℎΘ(𝑥) = 𝑎(3) = 𝑓(𝑧(3))

• More generally, recalling that we also use 𝑎(1) = 𝑥 to also denote the values from the
input layer,
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• then given layer 𝑙’s activations 𝑎(𝑙), we can compute layer 𝑙 + 1’s activations 𝑎(𝑙+1) as:

𝑧(𝑙+1) = Θ(𝑙)𝑎(𝑙) (5)
𝑎(𝑙+1) = 𝑓(𝑧(𝑙+1)) (6)

This can be used to provide a matrix representation for the weighted sum of inputs of all
neurons:

𝑧(𝑙+1) =
⎡
⎢⎢⎢
⎣

𝑧(𝑙+1)
1

𝑧(𝑙+1)
2

⋮
𝑧(𝑙)

𝑠𝑙+1

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝜃(𝑙)
10 𝜃(𝑙)

11 𝜃(𝑙)
12 ... 𝜃(𝑙)

1𝑠𝑙

𝜃(𝑙)
20 𝜃(𝑙)

21 𝜃(𝑙)
22 ... 𝜃(𝑙)

2𝑠𝑙
⋮ ⋮ ⋮ ⋮ ⋮

𝜃(𝑙)
𝑠𝑙+10 𝜃(𝑙)

𝑠𝑙+11 𝜃(𝑙)
𝑠𝑙+12 ... 𝜃(𝑙)

𝑠𝑙+1𝑠𝑙

⎤
⎥⎥⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎢
⎣

1
𝑎(𝑙)

1
𝑎(𝑙)

2
⋮

𝑎(𝑙)
𝑠𝑙

⎤
⎥
⎥
⎥
⎥
⎦

So that, the activation is then:

𝑎(𝑙+1) =
⎡
⎢⎢⎢
⎣

𝑎(𝑙+1)
1

𝑎(𝑙+1)
2
⋮

𝑎(𝑙)
𝑠𝑙+1

⎤
⎥⎥⎥
⎦

= 𝑓(𝑧(𝑙+1)) =
⎡
⎢⎢⎢
⎣

𝑓(𝑧(𝑙+1)
1 )

𝑓(𝑧(𝑙+1)
2 )
⋮

𝑓(𝑧(𝑙)
𝑠𝑙+1)

⎤
⎥⎥⎥
⎦

Forward propagation

• By organizing our parameters in matrices and using matrix-vector operations, we can
take advantage of fast linear algebra routines to quickly perform calculations in our
network.

• This process is called forward propagation.

Multiple architechtures for ANN

• We have so far focused on a single hidden layer neural network of the example One
can build neural networks with many distinct architectures (meaning patterns of con-
nectivity between neurons), including ones with multiple hidden layers.

• See here the Neural Network Zoo.
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Feed Forward Neural networks

The most common choice is a 𝑛𝑙-layered network where layer 1 is the input layer, layer 𝑛𝑙 is
the output layer, and each layer 𝑙 is densely connected to layer 𝑙 + 1.

In this setting, to compute the output of the network, we can successively compute all the
activations in layer 𝐿2, then layer 𝐿3, and so on, up to layer 𝐿𝑛𝑙 , using Equations (5-6).
This is one example of a feedforward neural network (FFNN), since the connectivity graph
does not have any directed loops or cycles.

The number of output units

Neural networks can also have multiple output units.

For example, in (Fig. 4) we can see a network with two hidden layers layers 𝐿2 and 𝐿3 and
four output units in layer 𝐿4, where bias of each layer were omited.

Figure 4: Neural network

To train this network, we would need training examples (𝑥(𝑖), 𝑦(𝑖)) where 𝑦(𝑖) ∈ ℝ4. This sort
of network is useful if there’re multiple outputs that you’re interested in predicting.

For example, in a medical diagnosis application, the vector 𝑥 might give the input features
of a patient, and the different outputs 𝑦𝑖’s might indicate presence or absence of different
diseases.

A loss function for optimization

• In order to estimate the weights we will aim at minimizing an appropriate loss function.

• A first idea may be to use squared error loss

𝑙(ℎ𝜃(𝑥), 𝑦) = (𝑦 − 1
1 + 𝑒−𝜃⊺𝑥 )2
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• However it happens to be that this is is not a convex problem which means that MSE
is not appropriate.

• Alternatively, we use the binary cross-entropy loss function :

𝑙(ℎ𝜃(𝑥), 𝑦) = { − log ℎ𝜃(𝑥) if 𝑦 = 1
− log(1 − ℎ𝜃(𝑥)) if 𝑦 = 0

• It can be written compactly as:

𝑙(ℎ𝜃(𝑥), 𝑦) = −𝑦 log ℎ𝜃(𝑥) − (1 − 𝑦) log(1 − ℎ𝜃(𝑥))

• Using cross-entropy loss, the cost function is of the form:

𝐽(𝜃) = − 1
𝑛[

𝑛
∑
𝑖=1

(𝑦(𝑖) log ℎ𝜃(𝑥(𝑖)) +

(1 − 𝑦(𝑖)) log(1 − ℎ𝜃(𝑥(𝑖)))]

• This is a convex optimization problem.

• Better to work with a regularized version of the cost function (we don’t regularize the
bias units)

𝐽(Θ) = − 1
𝑛[

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦(𝑖)
𝑘 log(ℎ𝜃(𝑥(𝑖)))𝑘

+ (1 − 𝑦(𝑖)
𝑘 ) log(1 − (ℎ𝜃(𝑥(𝑖)))𝑘)]

+ 𝜆
𝐿−1
∑
𝑙=1

𝑠𝑙

∑
𝑖=1

𝑠𝑙+1

∑
𝑗=1

(𝜃(𝑙)
𝑗𝑖 )2

Gradient descent

We saw in the previous section that training a network corresponds to choosing the param-
eters, that is, the weights and biases, that minimize the cost function (see Fig. 5). The
weights and biases take the form of matrices and vectors, but at this stage it is convenient
to imagine them stored as a single vector that we call 𝜃. Generally, we will suppose 𝜃 ∈ ℝ𝑝,
and write the cost function as 𝐽(𝜃) to emphasize its dependence on the parameters. So Cost
𝐽 ∶ ℝ𝑝 → ℝ.

We now introduce a classical method in optimization that is often referred to as steepest de-
scent or gradient descent. The method proceeds iteratively, computing a sequence of vectors
in ℝ𝑝 with the aim of converging to a vector that minimizes the cost function. Suppose that
our current vector is 𝜃. How should we choose a perturbation, Δ𝜃, so that the next vector,
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Figure 5: Error hypersurface

𝜃 + Δ𝜃, represents an improvement? If Δ𝜃 is small, then ignoring terms of order ||Δ𝜃||2, a
Taylor series expansion gives

𝐽(𝜃 + Δ𝜃) ≈ 𝐽(𝜃) +
𝑝

∑
𝑖=1

𝜕𝐽(𝜃)
𝜕𝜃𝑖

Δ𝜃𝑖

Here 𝜕𝐽(𝜃)
𝜕𝜃𝑖

denotes the partial derivative of the cost function with respect to the 𝑖-th weight.
For conveniende, we will let ∇𝐽(𝜃) ∈ ℝ𝑝 denote the vector of partial derivatives, known as
the gradient, so that

∇𝐽(𝜃) = (𝜕𝐽(𝜃)
𝜕𝜃1

, ..., 𝜕𝐽(𝜃)
𝜕𝜃𝑝

)⊺ (7)

Then,
𝐽(𝜃 + Δ𝜃) ≈ 𝐽(𝜃) + ∇𝐽(𝜃)⊺Δ𝜃 (8)

Our aim is to reduce the value of the cost function. The relation (8) motivates the idea of
choosing Δ𝜃 to make ∇𝐽(𝜃)⊺Δ𝜃 as negative as possible. We can address this problem via the
Cauchy-Schwarz inequality, which states that for any 𝑓, 𝑔 ∈ ℝ𝑝, we have |𝑓⊺𝑔| ≤ ||𝑓|| ⋅ ||𝑔||.
Moreover, the two sides are equal if and only if 𝑓 and 𝑔 are linearly dependent (meaning
they are parallel).

So the most negative that 𝑓⊺𝑔 can be is −||𝑓|| ⋅ ||𝑔||, which happens when 𝑓 = −𝑔. Hence
we should choose Δ𝜃 to lie in the direction of −∇𝐽(𝜃). Keeping in mind that (8) is an
approximation that is relevant only for small Δ𝜃, we will limit ourselves to a small step in
that direction. This leads to the update

𝜃 → 𝜃 − 𝜂∇𝐽(𝜃) (9)
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Here 𝜂 is small stepsize that, in this context, is known as the learning rate. This equa-
tion defines the steepest descent method. We choose an initial vector and iterate (9) until
some stopping criterion has been met, or until the number of iterations has exceeded the
computational budget.

Repeat:

𝜃𝑗 = 𝜃𝑗 − 𝜂 𝜕
𝜕𝜃𝑗

𝐽(𝜃)

simultaneously update all 𝜃𝑗

𝜂 ∈ (0, 1] denotes the learning parameter.

We aim to minimice the cost function

min
𝜃

𝐽(𝜃)

In order to use gradient descent, we need to compute 𝐽(𝜃) and the partiall derivative terms

𝜕
𝜕𝜃𝑗

𝐽(𝜃)

Initialization

The input data have to be normalized to have approximately the same range. The biases
can be initialized to 0. They also cannot be initialized with the same values, otherwise, all
the neurons of a hidden layer would have the same behavior. Perhaps the only property
known with complete certainty is that the initial parameters need to break symmetry be-
tween different units. We generally initialize the weights at random: the values 𝜃(𝑙)

𝑖𝑗 are i.i.d.
Uniform on [−𝑐, 𝑐] with possibly 𝑐 = 1/√𝑁𝑙 where 𝑁𝑙 is the size of the hidden layer 𝑙. We
also sometimes initialize the weights with a normal distribution 𝑁(0, 0.01).

Stochastic Gradient

Algorithm for optimization the cost function. When we have a large number of parameters
and a large number of training points, computing the gradient vector (7) at every iteration
of the steepest descent method (9) can be prohibitively expensive because we have to sum
across all training points (for instance in Big Data). A much cheaper alternative is to
replace the mean of the individual gradients over all training points by the gradient at a
single, randomly chosen, training point. This leads to the simplest form of what is called
the stochastic gradient method. A single step may be summarized as

• Choose an integer 𝑖 uniformly at random from {1, ..., 𝑛}
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• update
𝜃𝑗 = 𝜃𝑗 − 𝜂 𝜕

𝜕𝜃𝑗
𝐽(𝜃; 𝑥(𝑖)) (10)

Notice we have included 𝑥(𝑖) in the notation of 𝐽(𝜃; 𝑥(𝑖)) to remark the dependence. In
words, at each step, the stochastic gradient method uses one randomly chosen training point
to represent the full training set. As the iteration proceeds, the method sees more training
points. So there is some hope that this dramatic reduction in cost-per-iteration will be
worthwhile overall. We note that, even for very small 𝜂, the update (10) is not guaranteed
to reduce the overall cost function we have traded the mean for a single sample. Hence,
although the phrase stochastic gradient descent is widely used, we prefer to use stochastic
gradient.

The version of the stochastic gradient method that we introduced in (10) is the simplest
from a large range of possibilities. In particular, the index 𝑖 in (10) was chosen by sampling
with replacement after using a training point, it is returned to the training set and is just as
likely as any other point to be chosen at the next step. An alternative is to sample without
replacement; that is, to cycle through each of the 𝑛 training points in a random order.
Performing 𝑛 steps in this manner, refered to as completing an epoch, may be summarized
as follows:

• Shuffle the integers {1, ..., 𝑛} into a new order {𝑘1, ..., 𝑘𝑛}
• for 𝑖 in 1 ∶ 𝑛 update 𝜃𝑗 = 𝜃𝑗 − 𝜂 𝜕

𝜕𝜃𝑗
𝐽(𝜃; 𝑥(𝑘𝑖))

If we regard the stochastic gradient method as approximating the mean over all training
points by a single sample, then it is natural to consider a compromise where we use a small
sample average. For some 𝑚 << 𝑛 we could take steps of the following form.

• Choose 𝑚 integers {𝑘1, ..., 𝑘𝑚} uniformly at random from {1, ..., 𝑛}
• update 𝜃𝑗 = 𝜃𝑗 − 𝜂 1

𝑚 ∑𝑚
𝑖=1

𝜕
𝜕𝜃𝑗

𝐽(𝜃; 𝑥(𝑘𝑖))

In this iteration, the set {𝑥(𝑘𝑖)}𝑚
𝑖=1 is known as a mini-batch. Because the stochastic gra-

dient method is usually implemented within the context of a very large scale computation,
algorithmic choices such as mini-batch size and the form of randomization are often driven
by the requirements of high performance computing architectures. Also, it is, of course,
possible to vary these choices, along with others, such as the learning rate, dynamically as
the training progresses in an attempt to accelerate convergence.

References and resources

30


	Introduction to Deep Neural Networks
	Overview of Deep Learning
	Historical Background and Key Milestones
	The early history of artificial [neural networks]/intelligence
	Comparison with Traditional Machine Learning

	Artificial Neural Networks
	The perceptron, the building block
	Neurons and Activation Functions
	Multilayer perceptrons

	An example
	Data preprocessing
	Training a neural network
	Model evaluation


	Some mathematics behind ANN
	Mathematical formulation
	Mathematical formulation of the ANN
	A logistic regression ANN

	Parametrizing an ANN
	Compacting notation
	Forward propagation

	Multiple architechtures for ANN
	Feed Forward Neural networks
	The number of output units

	A loss function for optimization
	Gradient descent
	Initialization

	Stochastic Gradient

	References and resources

