
Introducing convolutional
neural networks

Esteban Vegas Alex Sanchez
Ferran Reverter

2023-05-09

Table of contents

How and What do computers see 1

Convolutional Layer 2
One-layer of a convolutional neural network 8
Deep Convolutional Network 9

Pooling Layers 9
Average pooling . 12

Fully Connected Layer 12

CNN definition in Keras 13

How and What do computers see

Computer vision is an exciting field, which has evolved quickly
thanks to deep learning. Researchers in this area have been ex-
perimenting many neural-network architectures and algorithms,
which have influenced other fields as well. In computer vision,
images are the training data of a network, and the input fea-
tures are the pixels of an image. These features can get re-
ally big. For example, when dealing with a 1megapixel im-
age, the total number of features in that picture is 3 million

1

(= 1000 × 1000 × 3 color channels). Then imagine passing this
through a neural network with just 1000 hidden units, and we
end up with some weights of 3 billion parameters! These num-
bers are too big to be managed, but, luckily, we have the per-
fect solution: Convolutional neural networks (CNN), see Figure
1.

Figure 1: Convolutional Neural Network

There are 3 main types of layers in a convolutional network:

• Convolution (CONV)
• Pooling (POOL)
• Fully connected (FC)

Convolutional Layer

A “convolution” is one of the building blocks of the Convolu-
tional network. The primary purpose of a “convolution” in the
case of a CNN is to extract features from the input image (Fig.
2).

Every image can be represented as a matrix of pixel values. An
image from a standard digital camera will have three channels:
red, green and blue. You can imagine those as three 2d-matrices
stacked over each other (one for each color), each having pixel
values in the range 0 to 255.

Applying a convolution to an image is like running a filter of a
certain dimension and sliding it on top of the image. That oper-
ation is translated into an element-wise multiplication between

2

Figure 2: Spatial hierarchy of visual modules

the two matrices and finally an addition of the multiplication
outputs. The final integer of this computation forms a single
element of the output matrix. Let’s review this via an example,
where we want to apply a filter (kernel) to detect vertical and
horizontal edges from a 2D original image (Fig. 3).

In this example, we used a value of a stride equal to 1, meaning
the filter moves horizontally and vertically by one pixel (see
Figure 4).

In this example the values of the filter were already decided
in the convolution. The goal of a convolutional neural
network is to learn the values in the filters. We treat
them as weights of the neural network, which the network
learns from data using backpropagation.

You might be wondering how to calculate the output size, based
on the filter dimensions and the way we slide it though the im-
age. We will get to the formula, but first We want to introduce
a bit of terminology.

You saw in the earlier example how the filter moved with a

3

Figure 3: Convolution filter

Figure 4: Sliding the filter

4

stride of 1 and covered the whole image from edge to edge.
This is what it’s called a valid convolution since the filter stays
within the borders of the image.

However, one problem quickly arises. When moving the filter
this way we see that the pixels on the edges are “touched” less
by the filter than the pixels within the image. That means we
are throwing away some information related to those positions.
Furthermore, the output image is shrinking on every convolu-
tion, which could be intentional, but if the input image is small,
we quickly shrink it too fast.

A solution to those setbacks is the use of padding. Before we
apply a convolution, we pad the image with zeros all around
its border to allow the filter to slide on top and maintain the
output size equal to the input. The result of padding in the
previous example will be (Figure 5).

Figure 5: Padding

5

Padding will result in a same convolution. We talked about
stride, which is essentially how many pixels the filter shifts
over the original image. Great, so now We can introduce the
formula to quickly calculate the output size, knowing the filter
size (𝑓), stride (𝑠), pad (𝑝), and input size (𝑛):

Output size

(𝑛 + 2𝑝 − 𝑓
𝑠 + 1) × (𝑛 + 2𝑝 − 𝑓

𝑠 + 1)

Keep in mind that the filter size is usually an odd value, and if
the fraction above is not an integer you should round it down.

The previous example was on a 2D matrix, but we mentioned
earlier that images are composed of three channels (R-red, G-
green, B-blue). Therefore the input is a volume, a stack of
three matrices, which forms a depth identified by the number
of channels. If we apply only one filter the result would be
(Figure 6), where the cube filter of 27 parameters now slides on
top of the cube of the input image.

Figure 6: Output

So far we have only applied one filter at a time, but we can
apply multiple filters to detect several different features. This is
what brings us to the crucial concept for building convolutional
neural networks. Now each filter brings us its own output We
can stack them all together and create an output volume, such
as, see Figures 7, 8 and 9.

6

Figure 7: Output volume

Therefore, in general terms we have:

Input: (𝑛 × 𝑛 × 𝑛𝑐)
Filter: (𝑓 × 𝑓 × 𝑛𝑐)

Output: ((𝑛+2𝑝−𝑓
𝑠 + 1) × (𝑛+2𝑝−𝑓

𝑠 + 1) × 𝑛′
𝑐)

(with 𝑛′
𝑐 as the number of filters, which are detecting different

features)

Figure 8: Representing a full color RGB image as a volume and
applying a convolutional filter

7

Figure 9: A three-dimensional visualization of a convolutional
layer, where each filter corresponds to a slice in the
resuting output volumen.

One-layer of a convolutional neural network

The final step that takes us to a convolutional neural layer is
to add the bias and a non-linear function (Figure 10).

Figure 10: Bias term

Remember that the parameters involved in one layer are inde-
pendent of the input size image. So let’s consider, for example,
that we have 10 filters that are of size 3 × 3 × 3 in one layer
of a neural network. Each filter has 27 (= 3 × 3 × 3) + 1 bias
=> 28 parameters. Therefore, the total amount of parameters
in the layer is 280 (10 × 28).

8

This means that all the neurons in the first hidden layer detect
exactly the same feature, just at different locations in the in-
put image. To see why this makes sense, suppose the weights
and bias are such that the hidden neuron can pick out, say, a
vertical edge in a particular local receptive field. That ability
is also likely to be useful at other places in the image. And so
it is useful to apply the same feature detector everywhere in
the image. To put it in slightly more abstract terms, convolu-
tional networks are well adapted to the translation invariance
of images: move a picture of a cat (say) a little ways, and it’s
still an image of a cat.

For this reason, we sometimes call the map from the in-
put layer to the hidden layer a feature map. We call the
weights defining the feature map the shared weights. And
we call the bias defining the feature map in this way the
shared bias. The shared weights and bias are often said
to define a kernel or filter (Figures 11 and 12, also link to
https://pathmind.com/wiki/convolutional-network).

Deep Convolutional Network

We are now ready to build a complete deep convolutional neural
network. The following architecture depicts a simple example
of that (Figure 13)

Pooling Layers

There are two types of pooling layers: max and average pooling.
Max pooling We define a spatial neighborhood (a filter), and
as we slide it through the input, we take the largest element
within the region covered by the filter.

We can think of max-pooling as a way for the network to ask
whether a given feature is found anywhere in a region of the
image. It then throws away the exact positional information.
The intuition is that once a feature has been found, its exact
location isn’t as important as its rough location relative to other
features. A big benefit is that there are many fewer pooled

9

Figure 11: Convolution process

10

Figure 12: Convolution process

Figure 13: Stacked convolution layers

11

features, and so this helps reduce the number of parameters
needed in later layers (Figure 14).

Figure 14: Max-pooling

Average pooling

As the name suggests, it retains the average of the values en-
countered within the filter. One thing worth noting is the fact
that a pooling layer does not have any parameters to learn. Of
course, we have hyper-parameters to select, the filter size and
the stride (it’s common not to use any padding).

Fully Connected Layer

A fully connected layer acts like a “standard” single neural net-
work layer, where you have a weight matrix W and bias b. We
can see its application in the following example of a Convolu-
tional Neural Network. This network is inspired by the LeNet-5
network (Figure 15).

It’s common that, as we go deeper into the network, the
sizes (nh, nw) decrease, while the number of channels (nc)
increases.

Another common pattern you can see in neural networks is to
have CONV layers, one or more, followed by a POOL layer,
and then again one or more CONV layers followed by a POOL
layer and, at the end, a few FC layers followed by a Softmax.

12

When choosing the right hyper-parameters (f, s, p, ..), look at
the literature and choose an architecture that was successfully
used and that can apply to your application. There are several
“classic” networks, such as LeNet, AlexNet, VGG,

These networks are normally used in transfer learning, where we
can use the weights coming from the existing trained network
and then replace the output unit, since training such a big
network from scratch would require a long time otherwise.

Figure 15: Convolution network scheme

CNN definition in Keras

library(keras)

small convnet
model <- keras_model_sequential() %>%

layer_conv_2d(filters = 6, kernel_size = c(5, 5), strides = 1, padding = "valid",
activation = "relu",input_shape = c(32, 32, 3)) %>%

layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 16, kernel_size = c(5, 5), strides = 1, padding = "valid",

activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>%
layer_dense(units = 120, activation = "relu") %>%
layer_dense(units = 84, activation = "relu") %>%
layer_dense(units = 1, activation = "softmax")

13

summary(model)

14

	How and What do computers see
	Convolutional Layer
	One-layer of a convolutional neural network
	Deep Convolutional Network

	Pooling Layers
	Average pooling

	Fully Connected Layer
	CNN definition in Keras

