
Web Scraping with R

Alex Sanchez and Francesc Carmona
Genetics Microbiology and Statistics Department

Universitat de Barcelona
October 2022

Contents
1. Introduction to web technologies & Overview
2. The basics: HTML and CSS
3. Scraping web pages with R using rvest
4. XML, XPath and the DOM. Parsing XML
5. Using APIs to get data

2 / 30

Objectives and Competences
Become familiar with technologies for content dissemination on the
web.

Information extraction from web-formatted data.

Become familiar -that is, know how to do it- with the different tasks
involved in web scraping.

Learn how to set up and execute successful web scraping projects
(making them as automatic, robust and error-resistant as possible).

3 / 30

We need data, and the web is full of it
Whatever our job is, it often relies on having the appropriate data to
work with.
The web has plenty of data

In 2008, an estimated 154 million HTML tables (out of the 14.1
billion) contain 'high quality relational data'!!!
Hard to quantify how much more exists outside of HTML Tables,
but there is an estimate of at least 30 million lists with 'high
quality relational data'.

Accessing the data in the web is the topic of this course

4 / 30

What we need to know
Technologies that allow the distribution of content on the Web.
Techniques & Tools for collecting (as opposite to distributing) data
from the web.
In the way to acquiring these abilites we may learn many useful
things that don't necessarily have to do with web scraping such as:

HTML/CSS for creating web -and non web- pages.
XML for sharing many types of data (also pdf, excel or epub)
Regular expressions for describing patterns in strings.
A variety of text mining and other interesting topics, such as
"Sentiment Analysis" for analyzing data from Twitter, Linkedin etc.

5 / 30

Data Technologies
Technologies for disseminating, extracting, and storing web data.

Source: Automated Data Collection with R

6 / 30

Technologies (1): HTML

Hypertext Markup Language (HTML) is the language that all browsers
understand.
Not a dedicated data storage format but
First option for containing information we look for.
A minimum understanding of html required

7 / 30

Technologies (2): CSS

CSS is the language for describing the presentation of Web pages,
including colors, layout, and fonts.
It allows one to adapt the presentation to different types of devices,
such as large screens, small screens, or printers.
CSS is independent of HTML and can be used with any XML-based
markup language.

8 / 30

Technologies (3): XML

EXtensible Markup Language or XML is one of the most popular
formats for exchanging data over the Web.
XML is "just" data wrapped in user-defined tags.
The user-defined tags make XML much more flexible for storing data
than HTML.

9 / 30

Technologies (4): XPath

The XML PathLanguage provides a powerful syntax for handling
specific elements of an XML document and, to the same extent,
HTML web pages in a simple way.
XML is "just" data wrapped in user-defined tags.
The user-defined tags make XML much more flexible for storing data
than HTML.

10 / 30

Technologies (4): JSON

JavaScript Object Notation or JSON
JSON is a lightweight data-interchange format
JSON is language independent but uses javascript syntax
JSON is a syntax for storing and exchanging data.
JSON is an easier-to-use alternative to XML

11 / 30

Technologies (5) XML vs JSON

12 / 30

Technologies (6): Regular Expressions

13 / 30

So what is web scraping?
Web scraping (web harvesting or web data extraction) is how we
name computer software techniques for extracting information from
websites.

See Wikipedia

Web scraping focuses on the transformation of unstructured data on
the web, typically in web format such as HTML, XML or JSON, into
structured data that can be stored and analyzed in a central local
database or spreadsheet.

Instead of structured data, if using R, we can think of tidy data.

14 / 30

https://en.wikipedia.org/wiki/Web_scraping
http://vita.had.co.nz/papers/tidy-data.pdf

Understanding web communication:
http

User/Client asks for information: http request
Server returns the information http response
Data acquisition may be performed at two levels

Requesting information directly from the server
Parsing the response emited by the server

15 / 30

Requesting information directly

Two ways for direct information retrieval:
in raw form through http GET requests
through an Application Programming Interface (API)

many APIs for retrieving data from "typical" places such as
Twitter, Amazon, Linkedin, etc.

In R: "RLinkedin" "TwiteR" etc. packages
APIs require an authorization/user identification

16 / 30

Parsing the server's response

Parser tools extract information from the response sent by the
server to the browser.
The response is usually an HTML / XML document.
Parsers exploit the hierarchichal structure of HTML / XML to extract
information and convert it into R objects
R packages: rvest , selectR , XML , xml2 17 / 30

The R scraping toolkit
Comparison of some popular R packages for data collection.

18 / 30

Web scraping and R
Web scraping has been developed independently of R.

See for example:

Scraping the Web for Arts and Humanities
Introduction to Web Scraping using Scrapy and Postgres

There is a lot of information on scraping using python

However if you feel comfortable working with R it is possible that
you can absorbe easier and faster some of the the vast amount of
resources for getting data from the web with R.

19 / 30

https://www.essex.ac.uk/ldev/documents/going_digital/scraping_book.pdf
http://newcoder.io/scrape/

The scrapping process

20 / 30

Example: Heritage sites in danger
The UNESCO is an organization of the United Nations which, among
other things, fights for the preservation of the world's natural and
cultural heritage.
As November 2013 there are 981 heritage sites, most of which of are
man-made like the Pyramids of Giza, but also natural phenomena
like the Great Barrier Reef are listed.
Unfortunately, some of the awarded places are threatened by
human intervention.
These are the questions that we want to examine in this first case
study.

Which sites are threatened and where are they located?
Are there regions in the world where sites are more endangered
than in others?
What are the reasons that put a site at risk?

21 / 30

Working through the case study with R
This case study has been adapted from chapter 1 of the book
Automated Data Collection with R (ADCR, from now on).
Its goal is not to be exhaustive but providing a first example of a
situation where we obtain and analyze data from the web.
The goal is to tabulate and plot a list of endangered sites available
in https://en.wikipedia.org/wiki/List_of_World_Heritage_in_Danger.
We proceed as follows:

1. Go to the web and locate the desired information
2. Download the pages (here, HTML document)
3. Extract HTML table into an R object
4. Clean the data and build a data.frame
5. Plot and analyze

22 / 30

http://www.r-datacollection.com/
https://en.wikipedia.org/wiki/List_of_World_Heritage_in_Danger

Example 1a: Wikipedia page

23 / 30

Example 1b: Locate desired table

24 / 30

Example 1c: R code (1)
load packages
library(stringr); library(XML); library(maps)
#--- parsing from locally stored HTML file
heritage_parsed <- htmlParse("worldheritagedanger.htm")
#--- Extract table from web page and select desired table
danger_table <- readHTMLTable(heritage_parsed, stringsAsFactors = FALSE, which =
danger_table <- danger_table[,c(1,3,4,6,7)]
colnames(danger_table) <- c("name","locn","crit","yins","yend")
#--- Clean data
danger_table$crit <- ifelse(str_detect(danger_table$crit, "Natural")T, "nat", "c
cleanse years
danger_table$yins <- as.numeric(danger_table$yins)
danger_table$yend <- as.numeric(unlist(str_extract_all(danger_table$yend, "[[:di
#--- get countries

25 / 30

Example 1c: R code (2)
#--- get countries
reg <- "[[:alpha:]]+(?=[[:digit:]])"
danger_table$country <- str_extract(danger_table$locn , reg)
#--- get coordinates
reg_y <- "[/][-]*[[:digit:]]*[.]*[[:digit:]]*[;]"
reg_x <- "[;][-]*[[:digit:]]*[.]*[[:digit:]]*"
danger_table$y_coords <- as.numeric(str_sub(str_extract(danger_table$locn, reg_y
danger_table$x_coords <- as.numeric(str_sub(str_extract(danger_table$locn, reg_
#--- plot endangered heritage sites
par(oma=c(0,0,0,0)); par(mar=c(0,0,0,0))
pch <- ifelse(danger_table$crit "nat", 19, 2)
map("world", col = "darkgrey", lwd = .5, mar = c(0.1,0.1,0.1,0.1))
points(danger_table$x_coords, danger_table$y_coords, pch = pch, col = "black", c
box()

26 / 30

Example 1d: We have an R data frame

27 / 30

Example 1e: And now the plot

28 / 30

References and resources (1)
Books

Automated Data Collection from the Web with R, by Munzer, Rubba,
Meisner & Nyhulis. Wiley.
XML and Web Technologies for Data Science with R. Deborah Nolan
& Duncan Temple Lang. UseR!
Introduction to Data Technologies. Duncan Murdoch.

Courses

Datacamp: Web scraping in R
Learn to scrape any website with R

29 / 30

http://www.r-datacollection.com/
http://www.rxmlwebtech.org/
https://www.stat.auckland.ac.nz/~paul/ItDT/itdt-2013-03-26.pdf
https://www.datacamp.com/courses/web-scraping-in-r
https://www.udemy.com/course/scrape-any-website-with-r/

References and resources (2)
Web documents/bookdown/etc.

Introduction to Computing with Data, particularly part IX, Data
Technologies
Web scraping with R by Steve Pittard

Tutorials/Blog posts/etc.

Getting Data from the Web with R, by Gaston Sánchez.
Web scraping for the humanities and social sciences, Rolf Fredheim
and Aiora Zabala.
R-bloggers posts on Web Scraping
And see also CRAN Web Services and Technologies task view

30 / 30

https://www.gastonsanchez.com/intro2cwd/
https://www.gastonsanchez.com/intro2cwd/datatech-intro.html
https://steviep42.github.io/webscraping/book/
https://github.com/gastonstat/tutorial-R-web-data
http://quantifyingmemory.blogspot.co.uk/2014/02/web-scraping-basics.html
http://www.r-bloggers.com/?s=web+scraping
https://cran.r-project.org/web/views/WebTechnologies.html

