
Web Scraping with R (2):

Regular
Expressions
Alex Sanchez and Francesc Carmona

October 2022

Introduction
Web scraping is about collecting information from the web.

Sometimes this will be contained in tables or other well
structured
containers,

But most of the times we need to gather relevant information
from
heaps of unstructured textual data.

This is usually done in three steps

1. Gather the unstructured text.

2. Determine which recurrent patterns in the data are we
looking
for.

3. Apply the patterns to the unstructured text to obtain the desired
information.

We focus on steps 2 and 3 and introduce regular
expressions
as the tool for optimally doing this
processing.

Regular expressions provide a syntax for systematically
accessing
and operating on text patterns.

When would one need regular
expressions?

The example below shows a typical situation where regular
expressions mat be useful: manipulating files by their names.

We are often faced with the problem of selecting/accessing a
subset
of files.

We can use string functions to extract certain (file)names, say all
documents on a certain topic.

At a certain level standard string functions will be enough to
describe
the names we want to access: for example all files whose name
includes the string dplyr.

For more sophisticated extractions this will not be enough. Here is
where regular expressions enter the game allowing to describe almost
any
pattern one can imagine.

Regular expressions are throroughly used by system
administrators to
manage computer files.

A different but related situation is when one whishes to extract
meaningful (or “given”) content from text.

Mining text to look for a certain type of expression

Mining twitter data

A simple example (1): files and
datasets

We have selected a few files from:from
https://github.com/STAT545-UBC/STAT545-UBC.github.io,
where you can find a good tutorial on regular expressions, and
have
compressed them into a zip file: regexExample1.zip.

We wish to locate all the files which deal with the
dplyr
package. We assume that these are file with the
string “dplyr”
inside their name.

To do this we proceed as follows:

1. List all files in the folder where you uncompressed

"regexEXample1.zip"

https://github.com/STAT545-UBC/STAT545-UBC.github.io

setwd("regexExample1")

files <- list.files()

setwd("..")

head(files)

A simple example (2): File selection
We can use grep() function to identify files whose name
contains the string “dplyr”.

If we set the argument value = TRUE,
grep() returns the
matches,

[1] "bit001_dplyr-cheatsheet.html"

[2] "block009_dplyr-intro.html"

[3] "block010_dplyr-end-single-table.html"

[4] "block023_dplyr-do.html"

[5] "cm008_dplyr-single-table.html"

If, instead, we set value = FALSE, grep()
returns their
indices.

grep("dplyr", files, value = TRUE)

grep("dplyr", files, value = FALSE)

[1] 1 5 6 10 12

More grep flavors
The invert argument let’s you get everything BUT the
pattern
you specify.

[1] 2 3 4 7 8 9 11 13 14 15 16 17 18

grepl() is a dimilar to grep but returns a
logical vector. See
here
for more information.

[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE

TRUE

[13] FALSE FALSE FALSE FALSE FALSE FALSE

grep("dplyr", files, invert=TRUE, value = FALSE)

grepl("dplyr", files)

http://www.rdocumentation.org/packages/base/functions/grep

So what are regular expressions?
A regular expression is a special text string for
describing a
certain amount of text.

This “certain amount of text” receives the formal name of
pattern.

A regular expression is a pattern that describes a set of
strings.

It is common to abbreviate the term “regular expression” as
regex.

Simply put, working with regular expressions is nothing more
than
pattern matching.

Forming regular expressions
Regex patterns consist of a combination of alphanumeric
characters as well as special characters.

e.g. [a-zA-Z0-9 .]*

A regex pattern can be as simple as a single character

But it can also be formed by several characters with a
more
complex structure.

Regular expressions are constructed from 3 things:

Literal characters are matched only by the
character itself.

Character classes, matched by any single
member of the
specified class

Modifers that operate on literal
characters, character classes, or
combinations of the two.

Common Regex tasks
identify match to a pattern:

grep(..., value = FALSE), grepl(),

stringr::str_detect()

extract match to a pattern:

grep(..., value = TRUE),

stringr::str_extract(),

stringr::str_extract_all()

locate pattern within a string, i.e. give the start
position of
matched patterns. +regexpr(),
gregexpr(),

stringr::str_locate(),
string::str_locate_all()

replace a pattern:

sub(), gsub(),

stringr::str_replace(),

stringr::str_replace_all()

split a string using a pattern:

strsplit(),

stringr::str_split()

String functions and patterns
Notice that the enumeration above relies on two types of
functions

Standard base R functions

Functions from the stringr package, developed for
extending
and simplifying R base functionalities.

All the functions require a pattern to describe the set of strings
on which they operate.

Regular expressions are not the functions but the rules used
to
build the patterns.

Regular expression syntax
Regular expressions typically specify characters or
character
classes to seek out, possibly with information about
repeats
and location within the string.

This is accomplished with the help of metacharacters that have
specific meaning:

$ * + . ? [] ^ { } | () \.

In this section, we will introduce the basic building blocks of
extended regular expressions as implemented in R.

The following string will serve as a running example:

example.obj <- "1. A small sentence. - 2. Another tiny sentence."

Syntax (1): Exact character
matching

At the most basic level characters match characters, even
in
regular expressions.

Thus, extracting a substring of a string will yield itself if
present:

Loading required package: stringr

[1] "small"

Otherwise, the function would return a missing value:

require(stringr)

str_extract(example.obj, "small")

 str_extract(example.obj, "banana")

[1] NA

grep can also be used to exctract a match but it returns
the whol
sentence matching the pattern.

[1] "1. A small sentence. - 2. Another tiny sentence."

grep("small", example.obj, value=TRUE)

The str_whatever functions
The stringr package offers both
str_whatever() and
str_whatever_all() in many
instances.

The former addresses the first instance of a matching string,

the latter accesses all instances.

The syntax of all these functions is such that:

the character vector in question is the first element,

the regular expression the second, and

all possible additional values come after that.

[[1]]

[1] "e" "e" "e" "e" "e" "e" "e"

require(stringr)

str_extract_all(example.obj,"e")

Refining the search for a character
(1) Specifying location

Sometimes we do not simply care about finding a match
anywhere in a
string but are concerned about the specific
location within a
string.

There are two simple additions we can make to our regular
expression
to specify locations.

The caret symbol (ˆ) at the beginning of a regular expression
marks
the beginning of a string

The dollar symbol ($) at the end marks the end. 3 Thus, extracting
2
from our running example will return a 2.

Syntax (2): Wildcards
The power of regular expressions stems from the possibility to
write
flexible, generalized search queries.

Wildcards allow the search for any character

The most general among them is the period character, “.”, that
matches any character.

[1] "small"

[1] "cat"

str_extract(example.obj, "sm.ll")

example.obj.2 <- "The cat sat on the mat"

str_extract(example.obj.2, ".at")

str_extract_all(example.obj.2, ".at")

[[1]]

[1] "cat" "sat" "mat"

Syntax (3): Escape sequences
There are some special characters in R that cannot be directly
coded
in a string.

For example, let’s say you specify your pattern with single
quotes
and you want to find countries with the single quote
'.

You would have to “escape” the single quote in the pattern, by
preceding it with \, so it’s clear it is not part of the
string-
specifying machinery:

'data.frame': 1704 obs. of 6 variables:

$ country : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan"

...

$ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

$ pop : num 8425333 9240934 10267083 11537966 13079460 ...

gDat <- read.delim("regexExample1/gapminderDataFiveYear.txt")

str(gDat)

$ continent: chr "Asia" "Asia" "Asia" "Asia" ...

$ lifeExp : num 28.8 30.3 32 34 36.1 ...

$ gdpPercap: num 779 821 853 836 740 ...

character(0)

grep('\'', levels(gDat$country), value = TRUE)

Syntax (3): More on Escape
sequences

There are other characters in R that require escaping, and this
rule
applies to all string functions in R, including regular
expressions.

\': single quote. You don’t need to escape single quote
inside a
double-quoted string, so we can also use "'" in
the previous
example.

\": double quote. Similarly, double quotes can be used
inside a
single-quoted string, i.e. '"'.

\n: newline.

\r: carriage return.

\t: tab character.

See here
for a complete list of R esacpe sequences.

Note: cat() and print() to handle escape
sequences
differently, if you want to print a string out with these
sequences interpreted, use cat().

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Quotes.html

Syntax (4): Quantifiers
Sometimes we need to describe a sequence by the number of
matches.
This can be done using quanitifiers

Quantifiers specify how many repetitions of the pattern.

*: matches at least 0 times.

+: matches at least 1 times.

?: matches at most 1 times.

{n}: matches exactly n times.

{n,}: matches at least n times.

{n,m}: matches between n and m times.

Syntax (4): Quantifiers (examples)

Exercise

Find all countries with ee in Gapminder using
quantifiers.

(strings <- c("a", "ab", "acb", "accb", "acccb", "accccb"))

grep("ac*b", strings, value = TRUE) # "ab" "acb" "accb" "acccb" "accccb"

grep("ac+b", strings, value = TRUE) # "acb" "accb" "acccb" "accccb"

grep("ac?b", strings, value = TRUE) # "ab" "acb"

grep("ac{2}b", strings, value = TRUE) # "accb"

grep("ac{2,}b", strings, value = TRUE) # "accb" "acccb" "accccb"

grep("ac{2,3}b", strings, value = TRUE) # "accb" "acccb"

Syntax (5): Position of pattern
within the string

The “begin” or “end” location can be extended to any position of
the
string * ^: matches the start of the string.

* $: matches the end of the string.

* \b: matches the empty string at either edge of a
word. Don’t
confuse it with ^ $ which marks the
edge of a string.

* \B: matches the empty string provided it is not at an
edge of a
word.

Exercise Find all .txt files in the
folder.

(strings <- c("abcd", "cdab", "cabd", "c abd"))

grep("ab", strings, value = TRUE)

grep("^ab", strings, value = TRUE)

grep("ab$", strings, value = TRUE)

grep("\\bab", strings, value = TRUE)

Syntax (6): Operators
Regular expressions are composed using operators.

.: matches any single character, as shown in the first
example.

[...]: a character list, matches any one of the
characters inside
the square brackets. We can also use -
inside the brackets to
specify a range of characters.

[^...]: an inverted character list, similar to
[...], but matches
any characters except
those inside the square brackets.

\: suppress the special meaning of metacharacters in
regular
expression, i.e. $ * + . ? [] ^ { } | () \,
similar to its
usage in escape sequences. Since \ itself
needs to be escaped in
R, we need to escape these metacharacters with
double
backslash like \\$.

|: an “or” operator, matches patterns on either side of
the |.

(...): grouping in regular expressions. This allows you
to
retrieve the bits that matched various parts of your regular
expression so you can alter them or use them for building up a
new
string. Each group can than be refer using \\N, with N
being
the No. of (...) used. This is called
backreference.

Syntax (6): Operators examples

Exercise

Find countries in Gapminder with letter i or
t, and ends with
land, and replace
land with LAND using backreference.

(strings <- c("^ab", "ab", "abc", "abd", "abe", "ab 12"))

grep("ab.", strings, value = TRUE)

grep("ab[c-e]", strings, value = TRUE)

grep("ab[^c]", strings, value = TRUE)

grep("^ab", strings, value = TRUE)

grep("\\^ab", strings, value = TRUE)

grep("abc|abd", strings, value = TRUE)

gsub("(ab) 12", "\\1 34", strings)

[1] "FinLAND" "IceLAND" "IreLAND" "SwaziLAND" "SwitzerLAND"

[6] "ThaiLAND"

Syntax (7): Character classes
Character classes allows to – surprise! – specify entire
classes
of characters, such as numbers, letters, etc.

There are two flavors of character classes, one uses
[:
and :] around a predefined name inside
square brackets
and the other uses \ and a special
character. They are
sometimes interchangeable.

[:digit:] or \d: digits, 0 1 2 3 4 5 6 7 8
9, equivalent to [0-9].

\D: non-digits, equivalent to
[^0-9].

[:lower:]: lower-case letters, equivalent to
[a-z].

[:upper:]: upper-case letters, equivalent to
[A-Z].

[:alpha:]: alphabetic characters, equivalent to
[[:lower:]
[:upper:]] or [A-z].

[:alnum:]: alphanumeric characters, equivalent to
[[:alpha:]
[:digit:]] or [A-z0-9].

[:blank:]: blank characters, i.e. space and tab.

[:space:]: space characters: tab, newline, vertical
tab, form
feed, carriage return, space.

More character classes
Other character classes are described below:

\w: word characters, equivalent to
[[:alnum:]_] or [A-z0-
9_].

\W: not word, equivalent to
[^A-z0-9_].

[:xdigit:]: hexadecimal digits (base 16), 0 1 2 3 4 5 6
7 8 9 A
B C D E F a b c d e f, equivalent to
[0-9A-Fa-f].

\s: space, .

\S: not space.

[:punct:]: punctuation characters, ! ” # $ % & ’ (
) * + , - . / : ; <
= > ? @ [] ^ _ ` { | } ~.

[:graph:]: graphical (human readable) characters:
equivalent to
[[:alnum:][:punct:]].

[:print:]: printable characters, equivalent to
[[:alnum:]
[:punct:]\\s].

[:cntrl:]: control characters, like \n or
\r, [\x00-
\x1F\x7F].

Note:

* [:...:] has to be used inside square brackets,
e.g. [[:digit:]].

* \ itself is a special character that needs escape,
e.g. \\d. Do
not confuse these regular expressions with R
escape sequences
such as \t.

General modes for patterns
There are different syntax
standards for regular expressions,
and R offers two:

POSIX extended regular expressions (default)

Perl-like regular expressions.

You can easily switch between by specifying
perl =
FALSE/TRUE in base R functions, such as
grep() and
sub().

For functions in the stringr package, wrap the pattern
with
perl().

The syntax between these two standards are a bit different
sometimes, see an example here.

http://en.wikipedia.org/wiki/Regular_expression#Standards
http://www.inside-r.org/packages/cran/stringr/docs/perl

Functions in the stringr package

Functions in the stringr package

Functions in stringr vs in
functions in base R

Functions in stringr vs in functions in
base R

Resources
A
Rstudio cheatsheet on string manipulation

A
basic cheatsheet on regular expressions

Official
document about Regular expression in R.

Perl-like regular expression: regular expression in perl manual.

qdapRegex
package: a collection of handy regular expression
tools, including
handling abbreviations, dates, email addresses,
hash tags, phone
numbers, times, emoticons, and URL etc.

There are some online tools to help learn, build and test
regular
expressions. On these websites, you can simply paste
your test data and
write regular expression, and matches will
be highlighted.

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
http://perldoc.perl.org/perlre.html#Regular-Expressions
http://trinkerrstuff.wordpress.com/2014/09/27/canned-regular-expressions-qdapregex-0-1-2-on-cran/

regexpal

RegExr

http://regexpal.com/
http://www.regexr.com/

