
Automating web scraping with R

Alex Sanchez and Francesc Carmona
Genetics Microbiology and Statistics Department

Universitat de Barcelona
October 2022

Outline

1) Introduction

2) User defined functions

3) Changing the execution flow

4) References and Resources

2 / 22

Introduction

3 / 22

Introduction

We have introduced R as a a language (a tool), to manage
and analyze data.
It is also a programming language

It is simple and versatile
The user can create new functions that adapt to their
needs
It is widely used (2nd most widely used in Data Science)
Users provide the community with a high variety of
solutions ("packages")
As a programming language it is not, however, very
efficient

4 / 22

Example 1: Why we need programming

It is very common that one has to do repetitive tasks on a
the same type of datasets, e.g.

Data produced periodically o,
Data from multiple sources but have the same structure.

For example, given a file with information about the cities of
a given province, we are required to produce a simpler
version:

With less columns
Without spaces or accents in the column names
With the appropriate data types for each column

5 / 22

Example 1: Transformations
library(dplyr); library(janitor)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

MunicipisBARC <- read.csv("datasets/MunicipisBARC.csv", quote='"')
MunicipisBreu <- MunicipisBARC %>% select (2,9,10,27,28) %>% 6 / 22

summary(MunicipisBARC[,c(2,9,10,27,28)])

Codi.INE Codi.de.comarca Nom.de.la.comarca Nombre.d.habitants
Min. :8001 Min. : 3.00 Length:311 Min. : 27.0
1st Qu.:8078 1st Qu.: 7.00 Class :character 1st Qu.: 734.5
Median :8156 Median :17.00 Mode :character Median : 3219.0
Mean :8166 Mean :19.73 Mean : 18375.3
3rd Qu.:8236 3rd Qu.:24.00 3rd Qu.: 11010.5
Max. :8905 Max. :42.00 Max. :1636732.0
Extensió
Min. : 0.40
1st Qu.: 11.01
Median : 21.17
Mean : 24.90
3rd Qu.: 34.12
Max. :102.90

summary(MunicipisBreu)

codi_ine codi_de_comarca nom_de_la_comar
Min. :8001 24 : 47 Osona : 47
1st Qu.:8078 41 : 39 Vallès Oriental: 39
Median :8156 6 : 33 Anoia : 33
Mean :8166 7 : 30 Bages : 30
3rd Qu.:8236 11 : 30 Baix Llobregat : 30
Max. :8905 14 : 30 Berguedà : 30
(Other):102 (Other) :102
extensio
Min. : 0.40
1st Qu.: 11.01
Median : 21.17
Mean : 24.90
3rd Qu.: 34.12
Max. :102.90
##

codi_de_comarca and nom_de_la_comarca are now
factors.

Example 1: Before and after transform

7 / 22

Repeating the transformation

How should we proceed if these changes had to be applied
repeteadly to many distinct files (with same structure)

One solution may consists of:

providing some way to encapsulate all steps needed to
do the transformation
in such a way that they can be easily applied to a file
everytime they are required.

This is an example of a "function" (a type of sub-program in
R) that we would use to automate this preprocessing.

8 / 22

User defined functions

9 / 22

Functions are named expressions

A function is a set of statements organized together to
perform a specific task.
R has a large number of in-built functions.
Users can create their own functions, for those situations
where they wish to apply the same set of instructions more
than once.

function_name <- function(arg_1, arg_2, ...) {
 sentence 1
 ...
 sentence n
 return(result)
}

Go here for more information on functions.
10 / 22

https://www.tutorialspoint.com/r/r_functions.htm

A preprocessing function

We can encapsulate preprocessing in a function:

preprocessa <- function(nomArxiuMunicipi){
 require(dplyr); require(janitor)
 unMunicipi <- read.csv(nomArxiuMunicipi)
 unMunicipiBreu <- unMunicipi %>% select (2,9,10,27,28) %>%
 janitor::clean_names() %>%
 mutate (across(c("codi_de_comarca", "nom_de_la_comarca"), as.factor))
 return(unMunicipiBreu)
}

And use it whenever is required. Assuming we had the files "MunicipisBARC.csv",
"MunicipisGIRO.csv" and "MunicipisLLEI.csv" available we would do:

BCNBreu <- preprocessa("MunicipisBARC.csv")
GiroBreu <- preprocessa("MunicipisGIRO.csv")
LleidaBreu <- preprocessa("MunicipisLLEI.csv")

11 / 22

Scraping a recipes site

Imagine we are scraping a recipes site
The code below extracts (without cleaning it) a recipe for
brownies.

library(rvest)
brownies <- read_html("https://www.allrecipes.com/recipe/25080/mmmmm-brownies/")
ingredients <- brownies %>%
 html_elements("#mntl-structured-ingredients_1-0") %>%
 html_text2() %>% stringr::str_split("\\n\\n")

xpath4Directions <- '//*[(@id = "recipe__steps_1-0")]'

directions <- brownies %>%
 html_elements(xpath=xpath4Directions) %>%
 html_text2() %>% stringr::str_split("\\n\\n")

Selectors were obtained inspecting the page source code
with SelectorGadget or Google Developper tools.

12 / 22

show(ingredients)

[[1]]
[1] "Ingredients" "½ cup white sugar"
[3] "2 tablespoons butter" "2 tablespoons water"
[5] "1 ½ cups semisweet chocolate chips" "2 large eggs, beaten"
[7] "½ teaspoon vanilla extract" "⅔ cup all-purpose flour"
[9] "½ teaspoon salt" "¼ teaspoon baking soda"

show(directions)

[[1]]
[1] "Directions"
[2] "Preheat the oven to 325 degrees F (165 degrees C
[3] "Combine sugar, butter, and water in a medium sau
[4] "Bake in the preheated oven until top is dry and
[5] "dotdash meredith food studios"

The scraped recipe

13 / 22

A function to scrape recipes

Proceed similarly as before:
abstracting the process and
turning what is different every time (URL) into arguments

scrape_recipes <- function(URL) {
 aDessert <- read_html(URL)
 ingredients <- aDessert %>%
 html_elements("#mntl-structured-ingredients_1-0") %>%
 html_text2() %>% stringr::str_split("\\n\\n")

 xpath4Directions <- '//*[(@id = "recipe__steps_1-0")]'

 directions <- aDessert %>%
 html_elements(xpath=xpath4Directions) %>%
 html_text2()%>% stringr::str_split("\\n\\n")
 return(list(Ingredientes=ingredients, Receta=directions))
}

14 / 22

show(brownies[["Ingredientes"]])

[[1]]
[1] "Ingredients" "½ cup white sugar"
[3] "2 tablespoons butter" "2 tablespoons water"
[5] "1 ½ cups semisweet chocolate chips" "2 large eggs, beaten"
[7] "½ teaspoon vanilla extract" "⅔ cup all-purpose flour"
[9] "½ teaspoon salt" "¼ teaspoon baking soda"

show(show(brownies[["Receta"]]))

[[1]]
[1] "Directions"
[2] "Preheat the oven to 325 degrees F (165 degrees C
[3] "Combine sugar, butter, and water in a medium sau
[4] "Bake in the preheated oven until top is dry and
[5] "dotdash meredith food studios"

NULL

The scraped recipe (2)

library(rvest)
recipeURL <- "https://www.allrecipes.com/recipe/25080/mmmmm-brownies/"
brownies <- scrape_recipes (recipeURL)

15 / 22

Changing the flow

16 / 22

Changing the flow of execution

R, as most ordinary programming languages, is executed
lineally, that is from the first to last line.

Sometimes this needs to be changed.

Taking alternative flows according to certain conditions
Repeating some instructions while certain condition
holds, or a fixed number of times,...

This can be acomplished using Flow Control Structures

17 / 22

Loop controlled by a counter: for

Loops are used in programming to repeat a specific block of
code made by one or more instructions.
Syntax of for loops:

 for (val in sequence)
 {
 statement
 }

sequence is a vector and val takes on each of its values
during the loop.
In each iteration, statement is evaluated.

18 / 22

Example of for loop

A for loop can be used to preprocess a list of selected files
Assume we have the list of four files to be processed, and
we know they have the same structure.
To process them all in one step do (not run):

llistaMunicipis <- c("MunicipisBAR.csv", "MunicipisGIR.csv",
 "MunicipisLLE.csv", "MunicipisTAR.csv")
for (nomFitxerMunicipis in llistaMunicipis) {
 municipisProvincia <- preprocessa("nomFitxerMunicipis")
 summary(municipisProvincia)
}

An alternative way to run the loop:

for (i in 1:length(llistaMunicipis) {
 municipisProvincia <- preprocessa(llistaMunicipis[i])

19 / 22

Exercise

Create a for loop that reads all filenames in your datasets
directory (or the directory you decide) and prints the name
of the file and the column names in the screen.

20 / 22

Scraping multiple recipes

Imagine we want to process not one but many desserts'
recipes from the web "https://www.allrecipes.com/".
This can be done using a simple for loop:

recipe_urls <- c("https://www.allrecipes.com/recipe/25080/mmmmm-brownies/",
 "https://www.allrecipes.com/recipe/27188/crepes/",
 "https://www.allrecipes.com/recipe/22180/waffles-i/")
listOfRecipes <- list()
for (i in 1:length(recipe_urls)) {
 listOfRecipes[i] <- scrape_recipes(recipe_urls[i])
}

Notice that the resulting scraped recipes are now stored in a list that
will be eventually processed by the user.

21 / 22

https://www.allrecipes.com/

Exercise

Write a simple function to print one recipes obtained using
the function scrape_recipes

Use this function to print all the recipes collected in the list
"listOfRecipes" -

22 / 22

