
Web Scraping with R (1): Parsing HTML

Alex Sanchez and Francesc Carmona
Genetics Microbiology and Statistics Department

Universitat de Barcelona
October 2022

Outline

1) Introduction: What is parsing

2) Parsing HTML with `

3) Using CSS selectors to locate information

4) References and Resources

rvest

2 / 33

Introduction: What is parsing?

3 / 33

Introduction to parsing

Scraping HTML pages usually done in two steps:

First, desired content from the Web is examined to
determine if it is actionable to further analyses.
Second, HTML files are read and information is extracted
from them.

Parsing HTML occurs at both steps

by the browser to display HTML content nicely, and also
by parsers in R to construct useful representations of
HTML documents in our programming environment.

4 / 33

What is parsing

Parsing involves breaking down a text into its component parts
of speech with an explanation of the form, function, and
syntactic relationship of each part. Wikipedia.

knitr::include_graphics("images/parseHTML.png")

HTML Parsing and Screen Scraping with the Simple HTML DOM Library 5 / 33

https://en.wikipedia.org/wiki/Parsing
https://code.tutsplus.com/tutorials/html-parsing-and-screen-scraping-with-the-simple-html-dom-library--net-11856

Reading vs parsing

Not just a semantic difference:

reading relies on functions that do not care about the
formal grammar that underlies HTML, only recognizing
the sequence of symbols included in the HTML file.

parsing employs programs that understand the special
meaning of the mark-up structure reconstructing the
HTML hierarchy within some R-specified structure.

6 / 33

Getting data (1): Reading an HTML file

HTML files are text files, thus, they can be read using the
readlines() function:

url <- "http://www.r-datacollection.com/materials/html/fort
fortunes <- readLines(con = url)
head(fortunes, n=10)

[1] "<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">"
[2] "<html> <head>"
[3] "<title>Collected R wisdoms</title>"
[4] "</head>"
[5] ""
[6] "<body>"
[7] "<div id=\"R Inventor\" lang=\"english\" date=\"June/200
[8] " <h1>Robert Gentleman</h1>"

7 / 33

readLines() is a reading function

maps every line of the input file to a separate value in a
character vector creating a flat representation of the
document.

it is agnostic about the different tag elements (name,
attribute, values, etc.),

it produces results that do not reflect the document’s
internal hierarchy as implied by the nested tags in any
sensible way.

8 / 33

Getting data (2): parsing an HTML file

To achieve a useful representation of HTML files, we need to
employ a program that:

understands the special meaning of the markup
structures, and
reconstructs the implied hierarchy of an HTML file within
some R-specific data structure.

This can be achieved by parser functions such as
rvest::read_html() or XML::htmlparse .

9 / 33

Parsing HTML with read_html

library(rvest)
url <- "http://www.r-datacollection.com/materials/html/fort
myHTML<- read_html (url)
myHTML

{html_document}
<html>
[1] <head>\n<meta http-equiv="Content-Type" content="text/htm
[2] <body>\n<div id="R Inventor" lang="english" date="June/20

10 / 33

The Document Object Model

The structure of the parsed HTML object can be better
viewed using xml_structure function from the xml2
package.

Print the HTML excerpt with the xml_structure() function
xml2::xml_structure(myHTML)

This representation is related with what we call the
Document Object Model (DOM).

A Document Object Model is a queryable data object that
can be built from any HTML file and is useful for further
processing of document parts.

11 / 33

A distraction: HTML tree structure

A HTML document can be seen as a hierarchichal collection
of tags which contain distinct elements.
Hint: Paste the source code of the fortunes.html document in This viewer

knitr::include_graphics("images/htmlHierarchy.png")

12 / 33

https://software.hixie.ch/utilities/js/live-dom-viewer/

DOM-style parsers

Transformation from HTML code to the DOM is the task of a
DOM-style parsers.

There are two mainstream packages that can be used for
parsing HTML code

rvest package by Hadley Wickam,
XML package by Duncan Temple and Debbie Nolan.

A few others can be found at CRAN Task View: Web
Technologies and Services.

13 / 33

https://github.com/hadley/rvest
https://cran.r-project.org/web/packages/XML/index.html
https://cran.r-project.org/web/views/WebTechnologies.html

Scrapping tools (I): The XML package

The XML package provides an interface to libxml2 a
powerful parsing library written in C.
The package is designed for two main purposes

parsing xml / html content
writing xml / html content (we wonn't cover this)

14 / 33

What can be achieved with XML?

The XML package is useful at 4 major types of tasks:

1. parsing xml / html content
2. obtaining descriptive information about parsed contents
3. navigating the tree structure (ie accessing its

components)
4. querying and extracting data from parsed contents

The XML package can be used for both XML and HTML
parsing.

15 / 33

Parsing HTML with rvest

16 / 33

Scraping tools: The rvest package

rvest is an R package written by Hadley Wickam to easily
scrap web pages

Wrappers around the 'xml2' and 'httr' packages to make
it easy to download, and manipulate, HTML and XML
It is inspired in the BeautifulSoup python package.
It is designed to work with magrittr to simplify tasks.

See more information on rvest at:

rvest package on CRAN
rvest documentation on DataCamp

17 / 33

http://hadley.nz/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/tidyverse/magrittr
https://cran.r-project.org/web/packages/rvest/index.html
https://www.rdocumentation.org/packages/rvest/versions/1.0.3

Basic rvest capabilities

Get the data: Parse an html document from a url, a file on
disk or a string containing html with read_html() (from the
xml2 package!). +info

Extract elements using html_element(s)() . +info

Use html_text2() to extract the plain text contents of an
HTML element. +info

Or use html_attr(s)() to retrieve the value of a single
attribute. +info

Use html_table to read a table from within a page. +info

18 / 33

https://www.rdocumentation.org/packages/xml2/versions/1.3.3/topics/read_xml
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_element
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_text2
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_attr
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_table

More rvest capabilities

Get children from an element html_children() .

Extract, modify and submit forms with -html_form() ,
set_values() and submit_form() .

Detect and repair encoding problems with:

guess_encoding() and repair_encoding() . Then pass the
correct encoding into html() as an argument.

19 / 33

html_0 <- '
<html>
 <body>
 <h1>Web scraping is coo
 <p>It requires getting
 <p><a href="https://asp
 </body>
</html>'

HTML data can be read
with read_html .

html_object <- xml2::read_h
show(html_0)

XML structure can be better
viewed with:

Print the HTML excerpt wi
xml_structure(html_0)

Examples (1): Read HTML

20 / 33

list_of_links <- '<h3>Usefu

 <a href="https://wiki
 <a href="https://www.
 <a href="https://diba
'

Extract all the "a" nodes from
the bulleted list.

links <- list_of_links %>%
 read_html() %>%
 html_elements("a")

Examples (2): html_elements()

21 / 33

sample1 <- minimal_html("<t
 <tr><th>Col A</th><th>Col
 <tr><td>1</td><td>x</td></
 <tr><td>4</td><td>y</td></
 <tr><td>10</td><td>z</td><
</table>")

sample1 %>%
 html_element("table") %>%
 html_table()

A tibble: 3 × 2
`Col A` `Col B`
<int> <chr>
1 1 x
2 4 y
3 10 z

Examples (3): html_table()

22 / 33

Examples (3b): more html_table()

url <- "https://en.wikipedia.org/wiki/List_of_World_Heritag
pageTables <- read_html (url) %>%
 html_elements("table") %>%
 html_table()
M2<- pageTables[[2]]
head(M2, n=3)

A tibble: 3 × 9
Name Image Location
<chr> <lgl> <chr>
1 Abu Mena NA EgyAbusir, Egypt
2 Air and Ténéré Natural Reserves NA Niger1Arlit Departmen
3 Ancient City of Aleppo NA Aleppo Governorate, &
… with abbreviated variable names ¹​Criteria, ²​̀Areaha (acre

23 / 33

Using CSS selectors to locate
information

24 / 33

Improving location using css selectors

Functions such as html_elements or html_table return one
or all the elements of a given kind.
To decide which objects to select we must identify them.
This may be done using CSS selectors that have been used
in the page to give structure ("tags") or change properties
("class", "id") of objects.

25 / 33

 myHTMLdoc <- '<html>
 <body>
 <div>Python </div>
 <p> Is perfect for programming.</p>
 <p> A nicely built language </p>
 <div>R </div>
 <p>Better for data analysis.</p>
 <p>Has prettier charts, too.</p>
 </body>
</html>'

theLanguages <- read_html(myHTMLdoc) %>%
 html_elements('div') %>%
 html_text2()
theLanguages

[1] "Python" "R"

Examples 4: Selection with tags

We can select the elements of a given type letting
html_elementsknow which type it is.

26 / 33

 myHTMLdoc <- '<html>
 <body>
 <div>Python </div>
 <p> Is perfect for programming.</p>
 <small> A nicely built language </small>
 <div>R </div>
 <p>Better for data analysis.</p>
 <small>Has prettier charts, too.</small>
 </body>
</html>'

theLanguages <- read_html(myHTMLdoc) %>%
 html_elements('div, small') %>%
 html_text2()
theLanguages

[1] "Python" "A nicely built language"
[4] "Has prettier charts, too."

Examples 4b: Multiple selection

The same idea can be used to select elements that have
one of several tags

27 / 33

Examples 5: Selection with class/id

After inspecting the page it can be seen that the table we
are interested in is of class "wikitable"
This is informed to html_element as: type.class

url <- "https://en.wikipedia.org/wiki/List_of_World_Heritage_in_Danger"
oneTable <- read_html (url) %>%
 html_element("table.wikitable") %>%
 html_table()
head(oneTable, n=3)

A tibble: 3 × 9
Name Image Location Crite…¹ Areah…² Year …³ Endan…⁴ Reason Refs
<chr> <lgl> <chr> <chr> <chr> <int> <chr> <chr> <chr>
1 Abu Mena NA EgyAbusir, Egypt.mw-par… Cultur… 182 (4… 1979 2001– "Cave… [17]…
2 Air and Ténéré Natural Reserves NA Niger1Arlit Department,… Natura… 7,736,… 1991 1992– "Mili… [20]…
3 Ancient City of Aleppo NA Aleppo Governorate, Sy… Cultur… 350 (8… 1986 2013– "Syri… [22]
… with abbreviated variable names ¹​Criteria, ²​̀Areaha (acre)`, ³​̀Year (WHS)`, ⁴​Endangered

28 / 33

Combining selectors

Selectors can be combined using operators as follows:
selector1 {space|>|+|~} selector2

There are four types of combinators

space : Descendant combinator
> : Child combinator
+ : Adjacent sibling combinator
~ : General sibling combinator

29 / 33

myhtml<- "<html>
<body>
<div class = 'first'>
<a>A link.
<p>The first paragraph with
<a>another link.
</p>
</div>
<div>
Not an actual paragraph,
but with a link.
</div>
</body>
</html>"

htmlObj<- myhtml %>% read_html()
htmlObj %>%
 html_elements('div.first a')
htmlObj %>%
 html_elements('div.first > a')
htmlObj %>%
 html_elements('div.first + div')
htmlObj %>%
 html_elements('div.first ~ div')

Examples 6: Combining selectors

30 / 33

myhtml<- '<html>
 <body>
 <div class="first section">
 Some text with a link.
 </div>
 <div class="second section">
 Some text with another lin
 <div class="first paragraph">Some text
 <div class="second paragraph">Some mor
 <div>...</div>
 </div>
 </div>
 </body>
</html>'

Select all divs that descend from another
div.
This can be done easily:

htmlObj<- myhtml %>% read_html()
Select the three divs with a simple selecto
htmlObj %>%
 html_elements('div div')

Or more complicated:

ComplexSelect
htmlObj %>%
 html_elements('.first + .second > div,
 div.second.paragraph > div

Examples 7: Combining selectors

31 / 33

References and Resources

32 / 33

Resources

33 / 33

