Web Scraping with R (1): Parsing HTML

Alex Sanchez and Francesc Carmona
Genetics Microbiology and Statistics Department

Universitat de Barcelona
October 2022

1) Introduction: What is parsing
2) Parsing HTML with rvest
3) Using CSS selectors to locate information

4) References and Resources

2/33

Introduction: What is parsing?

3/33

Introduction to parsing

e Scraping HTML pages usually done in two steps:

o First, desired content from the Web is examined to
determine If it Is actionable to further analyses.

o Second, HTML files are read and information is extracted
from them.

e Parsing HTML occurs at both steps

o by the browser to display HTML content nicely, and also
o by parsers in R to construct useful representations of
HTML documents in our programming environment.

4 [33

What Is parsing

Parsing involves breaking down a text into its component parts
of speech with an explanation of the form, function, and
syntactic relationship of each part. Wikipedia.

knitr::include_graphics("images/parseHTML.png")

<html:
<html: <{body:
<body> : <p>Hello World!</p>
<p*Hello World!<{/pZ> : <p class="class_name">
<p>We're Here.<{/p> : § We're here and we're here to stay.
</body> L &/p>
</html> </body>
</html>

HTML Parsing and Screen Scraping with the Simple HTML DOM Library 5/ 33

https://en.wikipedia.org/wiki/Parsing
https://code.tutsplus.com/tutorials/html-parsing-and-screen-scraping-with-the-simple-html-dom-library--net-11856

Reading vs parsing

e Not just a semantic difference:

o reading relies on functions that do not care about the
formal grammar that underlies HTML, only recognizing
the sequence of symbols included in the HTML file.

o parsing employs programs that understand the special
meaning of the mark-up structure reconstructing the
HTML hierarchy within some R-specified structure.

6/33

Getting data (1): Reading an HTML file

e HTML files are text files, thus, they can be read using the
readlines() function:

url <« "http://ww.r-datacollection.com/materials/html/for
fortunes <« readlLines(con = url)
head(fortunes, n=10)

rFy

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

TEHEETHERE

"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">"
"<html> <head>"

"<title>Collected R wisdoms</title>"

"</head>"

"<body>"

"<div 1d=\"R Inventor\" lang=\"english\" date=\"June/20(

" <hl>Robert Gentleman</h1>" 7733

readLines() is a reading function

e maps every line of the input file to a separate value in a
character vector creating a flat representation of the
document.

e it is agnostic about the different tag elements (name,
attribute, values, etc.),

e it produces results that do not reflect the document’s
internal hierarchy as implied by the nested tags in any
sensible way.

8 /33

Getting data (2): parsing an HTML file

e To achieve a useful representation of HTML files, we need to

employ a program that:
o understands the special meaning of the markup

structures, and
o reconstructs the implied hierarchy of an HTML file within

some R-specific data structure.
e This can be achieved by parser functions such as
rvest ::read _html() Or XML::htmlparse.

9/33

Parsing HTML with read_html

library(rvest)

url <« "http://ww.r-datacollection.com/materials/html/for1
myHTML< read_html (url)

myHTML

< >

{html_document}

H <html>

#H [1] <head>\n<meta http-equiv="Content-Type" content="text/htr
#H [2] <body>\n<div id="R Inventor" lang="english" date="June/2I

10 / 33

The Document Object Model

e The structure of the parsed HTML object can be better

viewed using xml_structure function from the xm12
package.

Print the HTML excerpt with the xml_structure() function
xml2 :: xml_structure(myHTML)

e This representation is related with what we call the
Document Object Model (DOM).

e A Document Object Model is a queryable data object that
can be built from any HTML file and is useful for further
processing of document parts.

11/33

A distraction: HTML tree structure

e A HTML document can be seen as a hierarchichal collection
of tags which contain distinct elements.

® Hint: Paste the source code of the fortunes.html document in This viewer

knitr::include_graphics("images/htmlHierarchy.png")

DOM view (hide, refresh):

LHTML

<head> HEAD

. F#text:
<title> -TITLE

L . ;
A Simple HTML Document _#tttxetx-t i A Simple HTML Document
</title> #text:
BODY

</head> F#text:

[] P []
<body> Lgtext: Thisisa very simple HTML document
<p>This is a very simple HTML :ﬁte“:
document</p> Lgtext: It only has two paragraphs
<p>It only has two Citent:
mﬂhﬁ< /Q> Rendered view: (hide):
</body> This is a very simple HTML document
</html>

It only has two paragraphs

12 /33

https://software.hixie.ch/utilities/js/live-dom-viewer/

DOM-style parsers

e Transformation from HTML code to the DOM Is the task of a
DOM-style parsers.

e There are two mainstream packages that can be used for
parsing HTML code

o rvest package by Hadley Wickam,
o XML package by Duncan Temple and Debbie Nolan.

e A few others can be found at CRAN Task View: Web
Technologies and Services.

13 /33

https://github.com/hadley/rvest
https://cran.r-project.org/web/packages/XML/index.html
https://cran.r-project.org/web/views/WebTechnologies.html

Scrapping tools (1): The [l package

e The XML package provides an interface to 1ibxml2 a
powerful parsing library written in C.
e The package is designed for two main purposes
o parsing xml / html content
o writing xml / html content (we wonn't cover this)

14/ 33

What can be achieved with [ll?

e The XML package is useful at 4 major types of tasks:

1. parsing xml / html content

2. obtaining descriptive information about parsed contents

3. navigating the tree structure (ie accessing its
components)

4. querying and extracting data from parsed contents

e The xmL package can be used for both XML and HTML
parsing.

15/ 33

Parsing HTML with [EES

16 / 33

Scraping tools: The package

e rvest IS an R package written by Hadley Wickam to easily
scrap web pages

o Wrappers around the 'xml2' and 'httr' packages to make
It easy to download, and manipulate, HTML and XML

o [tis inspired in the BeautifulSoup python package.

o |tis designed to work with magrittr to simplify tasks.

e See more information on rvest at:

o rvest package on CRAN
o rvest documentation on DataCamp

17/ 33

http://hadley.nz/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/tidyverse/magrittr
https://cran.r-project.org/web/packages/rvest/index.html
https://www.rdocumentation.org/packages/rvest/versions/1.0.3

Basic capabilities

e Get the data: Parse an html document from a url, a file on
disk or a string containing html with read_html() (from the
xml2 package!). +info

e Extract elements using html_element(s)(). +INfO

e Use html_text2() to extract the plain text contents of an
HTML element. +info

e Oruse html_attr(s)() to retrieve the value of a single
attribute. +info

e Use html_table to read a table from within a page. +info

18 /33

https://www.rdocumentation.org/packages/xml2/versions/1.3.3/topics/read_xml
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_element
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_text2
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_attr
https://www.rdocumentation.org/packages/rvest/versions/1.0.3/topics/html_table

More capabilities

e Get children from an element html _children().

e Extract, modify and submit forms with -html_form(),
set_values() and submit form().

e Detect and repair encoding problems with:

o guess_encoding() and repair_encoding(). Then pass the
correct encoding into html() as an argument.

19 /33

Examples (1): Read HTML

html 0 « °
<html>
<body>
<h1>Web scraping 1s coo
<p>It requires getting
<p><a href="https://asp
</body>
</ html>"

< »

e HTML data can be read
with read html.

html_object ¢ xml2::read_h
show(html _0)

< »

XML structure can be better
viewed with:

Print the HTML excerpt wi
xml_structure(html _0)

< »

20/ 33

Examples (2): html_elements()

<

list _of links ¢« '<h3>Usefu

<a href="https://wiki
<a href="https://ww.
<a href="https://diba
'

Extract all the "a" nodes from
the bulleted list.

links ¢ 1list of _links %>%
read html() %>%
html _elements("a")

21/ 33

Examples (3): html_table()

<

samplel < minimal_html("<t
<tr><th>Col A</ th><th>Col
<tr><td>1</td><td>x</td><
<tr><td>4</td><td>y</ td><
<tr><td>10</td><td>z</ td>
</table>")

samplel %>%
html _element("table") %>%
html _table()

TEHEFRE

A tibble: 3 x 2

No

"Col A~ "Col B
<int> <chr>
1 X
4y
10 z

22 [33

Examples (3b): more

url < "https://en.wikipedia.org/wiki/List _of World Heritas
pageTables « read_html (url) %>%
html _elements("table") %>%
html _table()
M2« pageTables[[2]]
head(M2, n=3)

< »

#H # A tibble: 3 x 9

#H Name Image Location

H <chr> <lgl> <chr>

#H 1 Abu Mena NA EgyAbusir, Egyp
#Ht 2 Air and Tenéeré Natural Reserves NA NigerlArlit Departmer
3 Ancilent City of Aleppo NA Aleppo Governorate,
#H # .. with abbreviated variable names "Criteria, 2 Areaha (acre

23/ 33

Using CSS selectors to locate
Information

24 [33

Improving location using css selectors

e Functions such as html _elements Or html _table return one

or all the elements of a given kind.
e To decide which objects to select we must identify them.

e This may be done using CSS selectors that have been used
in the page to give structure ("tags") or change properties

("class" "id") of objects.

25/ 33

Examples 4: Selection with tags

e We can select the elements of a given type letting
html_elements know which type it is.

myHTMLdoc ¢ '<html> thelanguages ¢« read_html(myHTMLdoc) %>%
<body> html_elements('div') %>%

<div>Python </div> html_text2()

<p> Is perfect for programming.</p> thelanguages

<p> A nicely built language </p>

<div>R </div> #o[1] "Python" "R"

<p>Better for data analysis.</p>
<p>Has prettier charts, too.</p>
</body>
</html>"

26 /33

Examples 4b: Multiple selection

e The same idea can be used to select elements that have
one of several tags

myHTMLdoc « '<html> thelanguages ¢« read_html(myHTMLdoc) %>%

<body> html_elements('div, small') %>%
<div>Python </div> html_text2()
<p> Is perfect for programming.</p> thelanguages
<small> A nicely built language </small>
<div>R </div> #t [1] "Python" "A nicely built language"
<p>Better for data analysis.</p> ## [4] "Has prettier charts, too."
<small>Has prettier charts, too.</small>

</body>

</html>"

27 | 33

Examples 5: Selection with class/id

e After Inspecting the page it can be seen that the table we
are interested in is of class "wikitable"
e This is informed to html_element as: type.class

url <« "https://en.wikipedia.org/wiki/List_of_World Heritage_in_Danger"
oneTable ¢« read_html (url) %>%

html_element("table.wikitable") %>%

html_table()
head(oneTable, n=3)

#H # A tibble: 3 x 9

it Name Image Location Crite.." Areah..? Year ..® Endan..* Reason Refs

#H <chr> <lgl> <chr> <chr> <chr> <int> <chr> <chr> <chr>

1 Abu Mena NA EgyAbusir, Egypt.mw-par.. Cultur.. 182 (4. 1979 2001- "Cave.. [17]..
2 Air and Ténéré Natural Reserves NA NigerlArlit Department,.. Natura.. 7,736,.. 1991 1992- "Mili.. [20]..

3 Ancient City of Aleppo NA Aleppo Governorate, Sy.. Cultur.. 350 (8. 1986 2013- "Syri.. [22]
.. with abbreviated variable names 'Criteria, 2 Areaha (acre)”, 2 Year (WHS) , “Endangered

28 /33

Combining selectors

e Selectors can be combined using operators as follows:

selectorl {spacelD |+|~} selector2
e There are four types of combinators

o space: Descendant combinator
o >: Child combinator

o +:Adjacent sibling combinator
o ~:General sibling combinator

29 /33

Examples 6: Combining selectors

myhtml« "<html> htmlObj¢« myhtml %>% read_html()
<body> htmlObj %>%

<div class = 'first'> html_elements('div.first a')
<a>A link. htmlObj %>%

<p>The first paragraph with html_elements('div.first > a')
<a>another link. htmlObj %>%

</ p> html_elements('div.first + div')
</div> htmlObj %>%

<div> html_elements('div.first ~ div')

Not an actual paragraph,

but with a link.
</div>

</body>

</html>"

30 /33

Examples 7: Combining selectors

myhtmlé& '<html>
<body>
<div class="first section">
Some text with a link.
</div>
<div class="second section">
Some text with another 1lin
<div class="first paragraph">Some text
<div class="second paragraph">Some mor
<div> ... </div>
</div>
</div>
</body>
</html>"'

< »

e Select all divs that descend from another
div.
e This can be done easily:

htmlObj¢ myhtml %>% read_html()
Select the three divs with a simple select
htmlObj %>%

html_elements('div div')

e Or more complicated:

ComplexSelect
htmlObj %>%
html_elements('.first + .second > div,
div.second.paragraph > div

< »

31/33

References and Resources

32 /33

Resources

33 /33

