Tree based methods and (Deep) Neural Networks
Professor
What this second part is about (Contents)
Methodology
Evaluation
References
By Gilgoldm - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=90405437
https://static.javatpoint.com/tutorial/machine-learning/images/
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
Brandon M. Greenwell (202) Tree-Based Methods for Statistical Learning in R. 1st Edition. Chapman and Hall/CRC DOI: https://doi.org/10.1201/9781003089032 Web site
Efron, B., Hastie T. (2016) Computer Age Statistical Inference. Cambridge University Press. Web site
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer. Web site
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT press. Web site
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Chollet, F. (2018). Deep learning with Python. Manning Publications.
Chollet, F. (2023). Deep learning with R . 2nd edition. Manning Publications.
Applied Data Mining and Statistical Learning (Penn Statte-University)
An Introduction to Recursive Partitioning Using the RPART Routines