
Learning with (Decision) Trees
Esteban Vegas Ferran Reverter Alex Sanchez

2024-03-19

Table of contents

Introduction 2
Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Decision tree basics 2
Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Training and testing decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Tree-Growing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Choosing the best split for a Variable . . . . . . . . . . . . . . . . . . . . . . . . . 5

Splitting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Node information functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Information gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Stop spliting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Plurality rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Choosing the best split in Regression Trees . . . . . . . . . . . . . . . . . . . . . . 9
Estimating the misclassification rate . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Tree Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Cost complexity pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Advantages and disadvantages of trees . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 13

options(width=100)
if(!require("knitr")) install.packages("knitr")
library("knitr")

1



Introduction

Decision trees have been around for a number of years. Their recent revival is due to the
discovery that ensembles of slightly different trees tend to produce much higher accuracy on
previously unseen data, a phenomenon known as generalization. Ensembles of trees will be
discussed but let us focus first on individual trees.

Supervised Learning

Classification and Regression are supervised learning task. Learning set is of the form:

L = {(x𝑖, 𝑦𝑖)}𝑛
𝑖=1

Classification (Two classes, binary)

x ∈ ℝ𝑑, 𝑦 ∈ {−1, +1}

Regression
x ∈ ℝ𝑑, 𝑦 ∈ ℝ

Decision tree basics

Decision tree

We can see Fig.1.

1. A tree is a set of nodes and edges organized in a hierarchical fashion. In contrast to
a graph, in a tree there are no loops. Internal nodes are denoted with circles and
terminal nodes with squares.

2



2. A decision tree is a tree where each split node stores a boolean test function to be
applied to the incoming data. Each leaf stores the final answer (predictor)

Training and testing decision trees

Basic notation

We can see Fig.2.

1. Input data is represented as a collection of points in the 𝑑-dimensional space which
are labeled by their feature responses.

2. A decision tree is a hierarchical structure of connected nodes.

3. Training a decision tree involves sending all training data {𝑣} into the tree and opti-
mizing the parameters of the split nodes so as to optimize a chosen cost function.

4. During testing, a split (internal) node applies a test to the input data 𝑣 and sends it to
the appropriate child. The process is repeated until a leaf (terminal) node is reached
(beige path).

3



Tree-Growing Procedure

We can see Fig.3.

In order to grow a classification tree, we need to answer four basic questions:

1. How do we choose the Boolean conditions for splitting at each node?
2. Which criterion should we use to split a parent node into its two child nodes?
3. How do we decide when a node become a terminal node (i.e., stop splitting)?
4. How do we assign a class to a terminal node?

4



Choosing the best split for a Variable

Splitting Strategies

At each node, the tree-growing algorithm has to decide on which variable it is “best” to
split. We need to consider every possible split over all variables present at that node, then
enumerate all possible splits, evaluate each one, and decide which is best in some sense.

For a description of splitting rules, we need to make a distinction between ordinal (or con-
tinuous) and nominal (or categorical) variables.

• For a continuous or ordinal variable, the number of possible splits at a given node is
one fewer than the number of its distinctly observed values.

• For a categorical variable defined by 𝑚 distinct categories, there are 2𝑚−1 − 1 distinct
splits.

We first need to choose the best split for a given variable.

Accordingly, we have to measure of goodness of a split.

Let 𝐶1,…,𝐶𝐾 be the 𝐾 ≥ 2 classes. For node 𝜏 , we denote by

𝑃(𝑋 ∈ 𝐶𝑘|𝜏)

the conditional probability that an observation 𝑥 is in 𝐶𝑘 given that it falls into the node
𝜏 .

Node information functions

We can see Fig.4

![Node impurity functions for the two-class case. The entropy function (rescaled) is the red
curve, the Gini index is the green curve, and the resubstitution estimate of the misclassifica-

5



tion rate is the blue curve.

To choose the best split over all variables, we first need to choose the best split for a given
variable. Accordingly, we define a measure of goodness of a split. For node 𝜏 , the node
information function 𝑖(𝜏) is definded by

𝑖(𝜏) = 𝜙(𝑝(1|𝜏), ..., 𝑝(𝐾|𝜏))

where 𝑝(𝑘|𝜏) is an estimate of 𝑃(𝑋 ∈ 𝐶𝑘|𝜏).
We require 𝜙 to be a symmetric function, defined on the set of all 𝐾-tuples of probabilities
(𝑝1, … , 𝑝𝑘) with unit sum, minimized at the points (1, 0, ⋯ , 0), (0, 1, ⋯ , 0), (0, 0, ⋯ , 1), and
maximized at the point ( 1

𝐾 , 1
𝐾 , ⋯ , 1

𝐾 ). One such function 𝜙 is the entropy function,

𝑖(𝜏) = −
𝐾

∑
𝑖=1

𝑝(𝑘|𝜏) log 𝑝(𝑘|𝜏)

An alternative to the the entropy is the Gini index, given by

𝑖(𝜏) = 1 −
𝐾

∑
𝑖=1

𝑝(𝑘|𝜏)2

And the misclassification rate

𝑖(𝜏) =
𝐾

∑
𝑖=1

𝑝(𝑘|𝜏)(1 − 𝑝(𝑘|𝜏))

6



Information gain

We can see Fig.5.

Suppose, at node 𝜏 , we apply split 𝑠 so that a proportion 𝑝𝐿 of the observations drops
down to the left child-node 𝜏𝐿 and the remaining proportion 𝑝𝑅 drops down to the right
child-node 𝜏𝑅

The goodness of split 𝑠 at node 𝜏 is given by the reduction in impurity gained by splitting
the parent node 𝜏 into its child nodes, 𝜏𝐿 and 𝜏𝑅,

𝐼(𝑠, 𝜏) = 𝑖(𝜏) − 𝑝𝐿𝑖(𝜏𝐿) − 𝑝𝑅𝑖(𝜏𝑅)

The best split for the single variable 𝑋𝑗 is the one that has the largest value of 𝐼(𝑠, 𝜏) over
all 𝑠 ∈ S𝑗, the set of possible distinct splits for 𝑋𝑗 .

Example

+1 -1 Total
𝑋𝑗 ≤ 𝑠 𝑛11 𝑛12 𝑛1+
𝑋𝑗 > 𝑠 𝑛21 𝑛22 𝑛2+
Total 𝑛+1 𝑛+2 𝑛++

Consider first, the parent node 𝜏 , estimate 𝑃(+1
𝜏 ) by 𝑛+1/𝑛++ and 𝑃(−1

𝜏 ) by 𝑛+2/𝑛++, and
then the estimated impurity function is:

𝑖(𝜏) = −( 𝑛+1
𝑛++

) log ( 𝑛+1
𝑛++

) − ( 𝑛+2
𝑛++

) log ( 𝑛+2
𝑛++

)

Note that 𝑖(𝜏) is completely independent of the type of proposed split.

Now, for the child nodes, 𝜏𝐿 y 𝜏𝑅. We estimated 𝑝𝐿 = 𝑛1+/𝑛++ and 𝑝𝑅 = 𝑛2+/𝑛++

7



For 𝑋𝑗 ≤ 𝑠, we estimate 𝑃(+1
𝜏𝐿

) = 𝑛11/𝑛1+ and 𝑃(−1
𝜏𝐿

) = 𝑛12/𝑛1+ For the condition 𝑋𝑗 > 𝑠,
we estimate 𝑃(+1

𝜏𝑅
) = 𝑛21/𝑛2+ and 𝑃(−1

𝜏𝑅
) = 𝑛22/𝑛2+. We then compute:

𝑖(𝜏𝐿) = −( 𝑛11
𝑛1+

) log ( 𝑛11
𝑛1+

) − ( 𝑛12
𝑛1+

) log ( 𝑛12
𝑛1+

)

𝑖(𝜏𝑅) = −( 𝑛21
𝑛2+

) log ( 𝑛21
𝑛2+

) − ( 𝑛22
𝑛2+

) log ( 𝑛22
𝑛2+

)

and, then we can compute 𝐼(𝑠, 𝜏).

Recursive Partitioning

• In order to grow a tree, we start with the root node, which consists of the learning
set L. Using the “goodness-of-split” criterion for a single variable, the tree algorithm
finds the best split at the root node for each of the variables, 𝑋1 to 𝑋𝑟.

• The best split 𝑠 at the root node is then defined as the one that has the largest value
of over all 𝑟 single-variable best splits at that node.

• We next split each of the child nodes of the root node in the same way. We repeat
the above computations for the left child node, except that we consider only those
observations that fall into each child node.

• When those splits are completed, we continue to split each of the subsequent nodes.
This sequential splitting process of building a tree layer-by-layer is called recursive
partitioning.

Stop spliting

• For example, we can declare a node to be terminal if it fails to be larger than a certain
critical size (𝑛𝑚𝑖𝑛 is some previously declared minimum size of a node).

• Another early action was to stop a node from splitting if the largest goodness-of-split
value at that node is smaller than a certain predetermined limit.

• These stopping rules, however, do not turn out to be such good ideas. A better
approach (Breiman et al. 2008) is to let the tree grow to saturation and then ”prune”
it back.

8



Plurality rule

We can see Fig.6.

How do we associate a class with a terminal node?

Suppose at terminal node 𝜏 there are 𝑛(𝜏) observations, of which 𝑛𝑘(𝜏) are from class 𝐶𝑘,
𝑘 = 1, ..., 𝐾. Then, the class which corresponds to the largest of the {𝑛1(𝜏), ..., 𝑛𝑘(𝜏)} is
assigned to 𝜏 .

This is called the plurality rule. This rule can be derived from the Bayes’s rule classifier,
where we assign the node 𝜏 to class 𝐶𝑖 if 𝑝(𝑖|𝜏) = max𝑘 𝑝(𝑘|𝜏).

Choosing the best split in Regression Trees

We now discuss the process of building a regression tree. Roughly speaking, there are two
steps.

1. We divide the predictor space-that is, the set of possible values for 𝑋1, 𝑋2, … , 𝑋𝑝 into
𝐽 distinct and non-overlapping regions, 𝑅1, 𝑅2, … , 𝑅𝐽 .

2. For every observation that falls into the region 𝑅𝑗, we make the same prediction, which
is simply the mean of the response values for the training observations in 𝑅𝑗.

For instance, suppose that in Step 1 we obtain two regions, 𝑅1 and 𝑅2, and that the response
mean of the training observations in the first region is 10, while the response mean of the
training observations in the second region is 20. Then for a given observation 𝑋 = 𝑥, if
𝑥 ∈ 𝑅1 we will predict a value of 10, and if 𝑥 ∈ 𝑅2 we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions 𝑅1, ..., 𝑅𝐽? In theory,
the regions could have any shape. However, we choose to divide the predictor space into
high-dimensional rectangles, or boxes, for simplicity and for ease of interpretation of the
resulting predictive model. The goal is to find boxes 𝑅1, ..., 𝑅𝐽? that minimize the RSS
(Residual Sum of Squares), given by

𝐽
∑
𝑗=1

∑
𝑖∈𝑅𝑗

(𝑦𝑖 − ̂𝑦𝑅𝑗
)2

9



where ̂𝑦𝑅𝑗
is the mean response for the training observations within the j-th box. Unfor-

tunately, it is computationally infeasible to consider every possible partition of the feature
space into 𝐽 boxes. For this reason, we take a top-down, greedy approach that is known
as recursive binary splitting. The approach is top-down because it begins at the top of the
tree (at which point all observations belong to a single region) and then successively splits
the predictor space; each split is indicated via two new branches further down on the tree.
It is greedy because at each step of the tree-building process, the best split is made at that
particular step, rather than looking ahead and picking a split that will lead to a better tree
in some future step.

In order to perform recursive binary splitting, we first select the predictor 𝑋𝑗 and the
cutpoint 𝑠 such that splitting the predictor space into the regions {𝑋|𝑋𝑗 ≤ 𝑠} and {𝑋|𝑋𝑗 >
𝑠} leads to the greatest possible reduction in RSS. (The notation {𝑋|𝑋𝑗 ≤ 𝑠} means the
region of predictor space in which 𝑋𝑗 takes on a value less than 𝑠). That is, we consider all
predictors 𝑋1, ..., 𝑋𝑝, and all possible values of the cutpoint 𝑠 for each of the predictors, and
then choose the predictor and cutpoint such that the resulting tree has the lowest RSS. In
greater detail, for any 𝑗 and 𝑠, we define the pair of half-planes

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≤ 𝑠}, 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 > 𝑠}
and we seek the value of 𝑗 and 𝑠 that minimize the equation

∑
𝑖∶𝑥𝑖∈𝑅1

(𝑦𝑖 − ̂𝑦𝑅1
)2 + ∑

𝑖∶𝑥𝑖∈𝑅2

(𝑦𝑖 − ̂𝑦𝑅2
)2 (1)

where ̂𝑦𝑅1
is the mean response for the training observations in 𝑅1(𝑗, 𝑠), and ̂𝑦𝑅2

is the
mean response for the training observations in 𝑅2(𝑗, 𝑠). Finding the values of 𝑗 and 𝑠 that
minimize (1) can be done quite quickly, especially when the number of features 𝑝 is not too
large.

Next, we repeat the process, looking for the best predictor and best cutpoint in order to split
the data further so as to minimize the RSS within each of the resulting regions. However,
this time, instead of splitting the entire predictor space, we split one of the two previously
identified regions. We now have three regions. Again, we look to split one of these three
regions further, so as to minimize the RSS. The process continues until a stopping criterion is
reached; for instance, we may continue until no region contains more than five observations.

Once the regions 𝑅1, ..., 𝑅𝐽 have been created, we predict the response for a given test
observation using the mean of the training observations in the region to which that test
observation belongs.

Estimating the misclassification rate

Let 𝑇 be the tree classifier and let ̃𝑇 = {𝜏1, 𝜏2, ..., 𝜏𝐿} denote the set of all terminal nodes
of 𝑇 . We can now estimate the true misclassification rate,

𝑅(𝑇 ) =
𝐿

∑
𝑙=1

𝑅(𝜏𝑙)𝑃 (𝜏𝑙), (2)

10



for 𝑇 , where 𝑃(𝜏) is the probability that an observation falls into node 𝜏 and 𝑅(𝜏) is the
within-node misclassification rate of an observation in node 𝜏 .

If we estimate 𝑅(𝜏) by
𝑟(𝜏) = 1 − max

𝑘
𝑝(𝑘|𝜏)

and we estimate 𝑃 (𝜏𝑙) by the proportion 𝑝(𝜏𝑙) of all observations that fall into node 𝜏𝑙, then,
the resubstitution estimate of 𝑅(𝑇 ) is

�̂�(𝑇 ) =
𝐿

∑
𝑙=1

𝑟(𝜏𝑙)𝑝(𝜏𝑙).

The resubstitution estimate �̂�(𝑇 ), however, leaves much to be desired as an estimate of
𝑅(𝑇 ).
First, bigger trees (i.e., more splitting) have smaller values of �̂�(𝑇 ); that is, �̂�(𝑇 ′) ≤ �̂�(𝑇 )),
where 𝑇 ′ is formed by splitting a terminal node of 𝑇 . For example, if a tree is allowed to
grow until every terminal node contains only a single observation, then that node is classified
by the class of that observation and �̂�(𝑇 ) = 0.

Second, using only the resubstitution estimate tends to generate trees that are too big for
the given data.

Third, the resubstitution estimate �̂�(𝑇 ) is a much-too-optimistic estimate of 𝑅(𝑇 ). More
realistic estimates of 𝑅(𝑇 ) are given below.

Tree Pruning

Since decision trees have a very high tendency to over-fit the data, a smaller tree with fewer
splits might lead to increase the generalization capability. Lower variance (estimation error)
at the cost of a little bias (approximation error).

One possible alternative to the process described above is to build the tree only so long as
the decrease in the node impurity measure, due to each split exceeds some (high) threshold.
However, due to greedy nature of the splitting algorithm, it is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very good split i.e., a
split that leads to a large reduction in impurity later on.

Therefore, a better strategy is to grow a very large tree 𝑇0, and then prune it back in order
to obtain a subtree.

11



Cost complexity pruning

A sequence of trees indexed by a nonnegative tuning parameter 𝛼 is considered. For each
value of 𝛼 there corresponds a subtree 𝑇 ⊂ 𝑇0 such that the penalized misclassification
rate

𝑅𝛼(𝑇 ) = 𝑅(𝑇 ) + 𝛼|𝑇 |
is as small as possible. Here |𝑇 | indicates the number of terminal nodes of the subtree 𝑇 ,
Think of 𝛼|𝑇 | as a penalty term for tree size, so that 𝑅𝛼(𝑇 ) penalizes 𝑅(𝑇 ) (2) for generating
too large a tree. For each 𝛼, we then choose that subtree 𝑇 (𝛼) of 𝑇0 that minimizes 𝑅𝛼(𝑇 ).
The tuning parameter 𝛼 controls a trade-off between the subtree’s complexity and its fit to
the training data. When 𝛼 = 0, then the subtree 𝑇 will simply equal 𝑇0. As 𝛼 increases,
there is a price to pay for having a tree with many terminal nodes, and so the above equation
will tend to be minimized for a smaller subtree.

Breiman et al. (1984) showed that for every 𝛼, there exists a unique smallest minimizing
subtree.

Depending on the cost of each additional leaf (i.e. the 𝛼 value) different sub-trees of 𝑇0
minimise the error-complexity measure. Breiman and his colleagues proved that although
𝛼 can run through a continuum of values there is a sequence of pruned trees such that each
element is optimal for a range of 𝛼, and so there is only a finite number of interesting 𝛼
values.

0 = 𝛼0 < 𝛼1 < 𝛼2 < 𝛼3 < ⋯ < 𝛼𝑀 ,

Furthermore, they developed an algorithm that generates a parametric family of pruned
trees

𝑇0 ≺ 𝑇1 ≺ 𝑇2 ≺ 𝑇3 ≺ ⋯ ≺ 𝑇𝑀 ,

such that each 𝑇𝑖 in the sequence is characterised by adifferent value 𝛼𝑖. They proved that
each tree 𝑇𝑖 in this sequence is optimal from the error-complexity perspective within the
interval [𝛼𝑖, 𝛼𝑖+1).
So far, we have constructed a finite sequence of decreasing-size subtrees 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑀 by
pruning more and more nodes from 𝑇0. When do we stop pruning? Which subtree of the
sequence do we choose as the “best” pruned subtree? Choice of the best subtree depends
upon having a good estimate of the misclassification rate 𝑅(𝑇𝑘) corresponding to the subtree
𝑇𝑘. Breiman et al. (1984) offered two estimation methods: use an independent test sample
or use cross-validation. When the data set is very large, use of an independent test set
is straightforward and computationally efficient, and is, generally, the preferred estimation
method. For smaller data sets, crossvalidation is preferred.

12



Advantages and disadvantages of trees

1. Trees are very easy to explain to people. In fact, they are even easier to explain than
linear regression!

2. Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches.

3. Trees can be displayed graphically, and are easily interpreted even by a non-expert
(especially if they are small).

4. Trees can easily handle qualitative predictors without the need to create dummy vari-
ables.

5. Unfortunately, trees generally do not have the same level of predictive accuracy as
some of the other regression and classification approaches.

However, by aggregating many decision trees, using methods like bagging, random forests,
and boosting, the predictive performance of trees can be substantially improved. We intro-
duce these concepts next.

Bibliography

A. Criminisi, J. Shotton and E. Konukoglu. Decision Forests for Classification, Regression,
Density Estimation, Manifold Learning and Semi-Supervised Learning. Microsoft Research
technical report TR-2011-114.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second
Edition. Springer. 2009.

13


	Introduction
	Supervised Learning

	Decision tree basics
	Decision tree
	Training and testing decision trees
	Basic notation
	Tree-Growing Procedure
	Choosing the best split for a Variable
	Splitting Strategies
	Node information functions
	Information gain

	Example
	Recursive Partitioning
	Stop spliting
	Plurality rule
	Choosing the best split in Regression Trees
	Estimating the misclassification rate
	Tree Pruning
	Cost complexity pruning

	Advantages and disadvantages of trees

	Bibliography

