
The caret package
Esteban Vegas Ferran Reverter

Alex Sanchez

2025-03-24

options(width=100)
if(!require("knitr")) install.packages("knitr")
library("knitr")
#getOption("width")
knitr::opts_chunk$set(comment=NA,echo = TRUE, cache=TRUE)

Introduction to caret

if(!require("caret")) install.packages("caret")
if(!require("mlbench")) install.packages("mlbench")
library("caret")

The caret package, short for classification and regression train-
ing, was built with several goals in mind:

• Create a unified interface for modelling and prediction
(interfaces to more than 200 models),

• Develop a set of semi-automated, reasonable approaches
for optimizing the values of the tuning parameters for
many of these models and

• Increase computational efficiency using parallel process-
ing.

That is caret has been developed to facilitate building, eval-
uating and comparing predictive models and as such it is an

1



interesting alternative to using multiple different packages for
distinct tasks, which, not only requires more time to learn how
to use each of them, but especially makes it much harder to
compare them.

Learning to use caret

There are multiple resources to learn caretthat go from simple
tutorials like this one or similars to courses, papers and a book
by Max Kuhn, the creator or the package.

Guiding example

• The caret package can be used to perform a study from
beginning to end.

• For this, it implements a set of general functions that
can roughly be associated with the distinct steps of an
analytical pipeline.

• We follow an example based on the sonar data from the
mlbench package to illustrate the multiple functionalities
of the package .

The goal is to predict two classes:

• M for metal cylinder
• R for rock

Data loading

library("mlbench")
data(Sonar)
names(Sonar)

2



[1] "V1" "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10" "V11" "V12"
[13] "V13" "V14" "V15" "V16" "V17" "V18" "V19" "V20" "V21" "V22" "V23" "V24"
[25] "V25" "V26" "V27" "V28" "V29" "V30" "V31" "V32" "V33" "V34" "V35" "V36"
[37] "V37" "V38" "V39" "V40" "V41" "V42" "V43" "V44" "V45" "V46" "V47" "V48"
[49] "V49" "V50" "V51" "V52" "V53" "V54" "V55" "V56" "V57" "V58" "V59" "V60"
[61] "Class"

The sonarpackage has 208 data points collected on 60 predic-
tors (energy within a particular frequency band).

Train/test splitting

We will most of the time want to split the data into two groups:
a training set and a test set.

This may be done with the createDataPartition function:

set.seed(1234) # Control of data generation
inTrain <- createDataPartition(y=Sonar$Class, p=.75, list=FALSE)
str(inTrain)

int [1:157, 1] 2 3 4 6 7 8 9 11 14 15 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr "Resample1"

training <- Sonar[inTrain,]
testing <- Sonar[-inTrain,]
nrow(training)

[1] 157

Others similar functions are: createFolds and createResample,

3



Preprocessing and training

Usually, before prediction, data may have to be cleaned and
pre-processed.

Caret allows to integrate it with the training step using the
train function.

This function has multiple parameter such as:

• method: Can choose from more than 200 models
• preprocess: all type of filtering and transformations

CART1Model <- train (Class ~ .,
data=training,
method="rpart1SE",
preProc=c("center","scale"))

CART1Model

CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 157, 157, 157, 157, 157, 157, ...
Resampling results:

Accuracy Kappa
0.6752493 0.350363

Refining specifications

Many specifications can be passed using the trainControl in-
struction.

4



ctrl <- trainControl(method = "repeatedcv", repeats=3)
CART1Model3x10cv <- train (Class ~ .,

data=training,
method="rpart1SE",
trControl=ctrl,
preProc=c("center","scale"))

CART1Model3x10cv

CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 142, 142, 141, 141, 142, ...
Resampling results:

Accuracy Kappa
0.7087173 0.4168066

We can change the method used by changing the trainControl
parameter.

In the example below we fit a classification tree with different
options:

ctrl <- trainControl(method = "repeatedcv", repeats=3,
classProbs=TRUE,
summaryFunction=twoClassSummary)

CART1Model3x10cv <- train (Class ~ .,
data=training,
method="rpart1SE",
trControl=ctrl,
metric="ROC",
preProc=c("center","scale"))

CART1Model3x10cv

5



CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 141, 142, 141, 141, 142, ...
Resampling results:

ROC Sens Spec
0.7757068 0.775 0.6869048

CART2Fit3x10cv <- train (Class ~ .,
data=training,
method="rpart",
trControl=ctrl,
metric="ROC",
preProc=c("center","scale"))

CART2Fit3x10cv

CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 142, 142, 142, 142, 142, 140, ...
Resampling results across tuning parameters:

cp ROC Sens Spec
0.06849315 0.7033441 0.6851852 0.6779762
0.10958904 0.6829282 0.7523148 0.5922619
0.47945205 0.5517196 0.8629630 0.2404762

ROC was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.06849315.

6



plot(CART2Fit3x10cv)

Complexity Parameter

R
O

C
 (

R
ep

ea
te

d 
C

ro
ss

−
V

al
id

at
io

n)

0.55

0.60

0.65

0.70

0.1 0.2 0.3 0.4

CART2Fit3x10cv <- train (Class ~ .,
data=training,
method="rpart",
trControl=ctrl,
metric="ROC",
tuneLength=10,
preProc=c("center","scale"))

CART2Fit3x10cv

CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 142, 140, 141, 141, 142, ...
Resampling results across tuning parameters:

cp ROC Sens Spec
0.00000000 0.7375744 0.7305556 0.6220238

7



0.05327245 0.7382523 0.7453704 0.6130952
0.10654490 0.6816468 0.7773148 0.5696429
0.15981735 0.6787368 0.8092593 0.5482143
0.21308980 0.6787368 0.8092593 0.5482143
0.26636225 0.6787368 0.8092593 0.5482143
0.31963470 0.6787368 0.8092593 0.5482143
0.37290715 0.6787368 0.8092593 0.5482143
0.42617960 0.6787368 0.8092593 0.5482143
0.47945205 0.5748016 0.8680556 0.2815476

ROC was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.05327245.

plot(CART2Fit3x10cv)

Complexity Parameter

R
O

C
 (

R
ep

ea
te

d 
C

ro
ss

−
V

al
id

at
io

n)

0.60

0.65

0.70

0.0 0.1 0.2 0.3 0.4 0.5

Predict & confusionMatrix functions

To predict new samples can be used predict function.

• type = prob : to compute class probabilities
• type = raw : to predict the class

The confusionMatrix function will compute the confusion ma-
trix and associated statistics for the model fit.

8



CART2Probs <- predict(CART2Fit3x10cv, newdata = testing, type = "prob")
CART2Classes <- predict(CART2Fit3x10cv, newdata = testing, type = "raw")
confusionMatrix(data=CART2Classes,testing$Class)

Confusion Matrix and Statistics

Reference
Prediction M R

M 21 5
R 6 19

Accuracy : 0.7843
95% CI : (0.6468, 0.8871)

No Information Rate : 0.5294
P-Value [Acc > NIR] : 0.0001502

Kappa : 0.5681

Mcnemar's Test P-Value : 1.0000000

Sensitivity : 0.7778
Specificity : 0.7917

Pos Pred Value : 0.8077
Neg Pred Value : 0.7600

Prevalence : 0.5294
Detection Rate : 0.4118

Detection Prevalence : 0.5098
Balanced Accuracy : 0.7847

'Positive' Class : M

Model comparison

The resamplesfunction enable smodel comparison

resamps=resamples(list(CART2=CART2Fit3x10cv,
CART1=CART1Model3x10cv))

summary(resamps)

9



Call:
summary.resamples(object = resamps)

Models: CART2, CART1
Number of resamples: 30

ROC
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

CART2 0.5000000 0.6294643 0.7455357 0.7382523 0.8058036 0.952381 0
CART1 0.5535714 0.7249504 0.7926587 0.7757068 0.8315972 0.937500 0

Sens
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

CART2 0.4444444 0.6250000 0.7500000 0.7453704 0.875 1 0
CART1 0.4444444 0.6666667 0.7777778 0.7750000 0.875 1 0

Spec
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

CART2 0.250 0.5714286 0.6250000 0.6130952 0.7142857 0.8750000 0
CART1 0.375 0.5714286 0.7142857 0.6869048 0.8571429 0.8571429 0

xyplot(resamps,what="BlandAltman")

ROC

Average

C
A

R
T

2 
−

 C
A

R
T

1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.60 0.65 0.70 0.75 0.80 0.85

10



diffs<-diff(resamps)
summary(diffs)

Call:
summary.diff.resamples(object = diffs)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0

ROC
CART2 CART1

CART2 -0.03745
CART1 0.1598

Sens
CART2 CART1

CART2 -0.02963
CART1 0.4514

Spec
CART2 CART1

CART2 -0.07381
CART1 0.02404

Example: Comparison of boosting methods

We use the caret package and the BreastCancer dataset.

Adaboost

In this example, we are using the rpart algorithm as the base
learner for AdaBoost. We can then use the predict function to
make predictions on new data:

11



library(caret)
library(mlbench)

data(BreastCancer)

# Split the data into training and testing sets
set.seed(123)
trainIndex <- createDataPartition(BreastCancer$Class, p = 0.7, list = FALSE)
training <- BreastCancer[trainIndex, ]
testing <- BreastCancer[-trainIndex, ]

# Next, set up
# - the training control and
# - tuning parameters for the AdaBoost algorithm:

ctrl <- trainControl(method = "repeatedcv",
number = 10, repeats = 3,
classProbs = TRUE,
summaryFunction = twoClassSummary)

params <- data.frame(method = "AdaBoost",
nIter = 100,
interaction.depth = 1,
shrinkage = 0.1)

# we are using 10-fold cross-validation with 3 repeats and the twoClassSummary function for evaluation.
# We are also setting the number of iterations for the AdaBoost algorithm to 100, the maximum interaction depth to 1, and the shrinkage factor to 0.1.

# Use the train function to train the AdaBoost algorithm on the training data and evaluate its performance on the testing data:

adaboost <- train(Class ~ ., data = training,
method = "rpart",
trControl = ctrl,
tuneGrid = params)

predictions <- predict(adaboost, newdata = testing)

# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)

12



Gradient boosting

We use the gbm method in train() function from the caret pack-
age to build a Gradient Boosting model on the Breast Cancer
dataset.

library(caret)
library(gbm)
data(BreastCancer)

# Convert the diagnosis column to a binary factor
BreastCancer$diagnosis <- ifelse(BreastCancer$diagnosis == "M", 1, 0)

# Split the dataset into training and testing sets
trainIndex <- createDataPartition(BreastCancer$diagnosis, p = 0.7, list = FALSE)
trainData <- BreastCancer[trainIndex, ]
testData <- BreastCancer[-trainIndex, ]

# Define the training control
ctrl <- trainControl(method = "cv", number = 10, classProbs = TRUE, summaryFunction = twoClassSummary)

# Define the Gradient Boosting model
model <- train(diagnosis ~ ., data = trainData, method = "gbm", trControl = ctrl,

verbose = FALSE, metric = "ROC", n.trees = 1000, interaction.depth = 3, shrinkage = 0.01)

# Make predictions on the testing set
predictions <- predict(model, testData)

# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)

XGBoost

• In this example, we use the xgbTree method in train()
function from the caret package to build an XGBoost
model on the BreastCancer dataset.

• The hyperparameters are set to default values, except for
parameters:

– nrounds,

13



– max_depth,
– eta, lambda, and
– alpha

• The final performance is evaluated using a confusion ma-
trix.

library(caret)
library(xgboost)
data(BreastCancer)

# Convert the diagnosis column to a binary factor
BreastCancer$diagnosis <- ifelse(BreastCancer$diagnosis == "M", 1, 0)

# Split the dataset into training and testing sets
trainIndex <- createDataPartition(BreastCancer$diagnosis, p = 0.7, list = FALSE)
trainData <- BreastCancer[trainIndex, ]
testData <- BreastCancer[-trainIndex, ]

# Define the training control
ctrl <- trainControl(method = "cv", number = 10, classProbs = TRUE, summaryFunction = twoClassSummary)

# Define the XGBoost model
model <- train(diagnosis ~ .,

data = trainData,
method = "xgbTree", trControl = ctrl,
verbose = FALSE, metric = "ROC",
nrounds = 1000, max_depth = 3,
eta = 0.01, lambda = 1, alpha = 0)

# Make predictions on the testing set
predictions <- predict(model, testData)

# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)

14



References

Official references and resources

• Caret tutorial at UseR! 2014
• The caret package
• JSS Paper
• Applied Predictive Modeling Blog
• Caret cheatsheet in Rstudio cheatsheet page

Other resources

• Caret Package – A Practical Guide to Machine Learning
in R -Create predictive models in R with Caret

• Caret R Package for Applied Predictive Modeling

15

https://static1.squarespace.com/static/51156277e4b0b8b2ffe11c00/t/53ad86e5e4b0b52e4e71cfab/1403881189332/Applied_Predictive_Modeling_in_R.pdf
https://topepo.github.io/caret/index.html
http://www.jstatsoft.org/v28/i05/paper
http://appliedpredictivemodeling.com/
https://www.rstudio.com/resources/cheatsheets/
https://www.machinelearningplus.com/machine-learning/caret-package/
https://www.machinelearningplus.com/machine-learning/caret-package/
https://towardsdatascience.com/create-predictive-models-in-r-with-caret-12baf9941236
https://machinelearningmastery.com/caret-r-package-for-applied-predictive-modeling/

	Introduction to caret
	Learning to use caret

	Guiding example
	Data loading
	Train/test splitting
	Preprocessing and training
	Refining specifications

	Predict & confusionMatrix functions
	Model comparison

	Example: Comparison of boosting methods
	Adaboost
	Gradient boosting
	XGBoost
	References
	Official references and resources
	Other resources



