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Supervised Learning (the prediction problem)

Let (𝑋, 𝑌 ) be a r.v. with support 𝒳 × 𝒴 ⊆ ℝ𝑝 × ℝ.
General supervised learning or prediction problem:

Training sample: 𝑆 = {(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛)}, i.i.d. from
(𝑋, 𝑌 ).
The goal is to define a function (possibly depending on the
sample) ℎ𝑆 ∶ 𝒳 ↦ 𝒴 such that for a new independent
observation (𝑥𝑛+1, 𝑦𝑛+1) , from which we only know 𝑥𝑛+1, it
happens that:

̂𝑦𝑛+1 = ℎ𝑆 (𝑥𝑛+1) is close to 𝑦𝑛+1 (in some sense).

Function ℎ𝑆 is called generically a prediction function. (or
classification function or regression function, depending on the
case).
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Classification and Regression problems

The prediction function ℎ𝑆 is said to describe a classification or a
regression problem depending on the case.

If 𝒴 ⊆ ℝ (or 𝒴 an interval) we have a standard regression
problem.

Example: Relating Salary and demographic variables

If 𝒴 = {0, 1} (or, also, 𝒴 = {−1, 1} ) we have a problem of
binary classification or discrimination.

Example: Predicting if a COVID patient will require (or not)
ICU

If 𝒴 = {1, … , 𝐾} (or 𝒴 = {𝑦 ∈ {0, 1}𝐾 ∶ ∑𝐾
𝑘=1 𝑦𝑘 = 1})

we face a of 𝐾 classes classification problem.
Example: Classifying a tumor into one of many types
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Supervised learning

Probabilistic model for supervised learning
Response variable 𝑌 .

Explanatory variables (features) 𝑋 = (𝑋1, … , 𝑋𝑝).
Data (𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝) , 𝑦𝑖) , 𝑖 = 1, … , 𝑛 i.i.d. from the
random variable

(𝑋 = (𝑋1, … , 𝑋𝑝) , 𝑌 ) ∼ Pr(𝑋, 𝑌 )

Pr(𝑋, 𝑌 ) denotes the joint distribution of 𝑋 and 𝑌 .
When this joint distribution is continuous, Pr(𝑋, 𝑌 ) is the
joint probability density function.
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Main interest is predicting 𝑌 from 𝑋.

Given the probabilistic model it can be re-stated as learning
the conditional distribution Pr(𝑌 ∣ 𝑋).
In practice we focus on learning a conditional location
parameter:

𝜇(𝑥) = argmin
𝜇

𝔼(𝐿(𝑌 , 𝜇) ∣ 𝑋 = 𝑥),

where 𝐿(𝑦, ̂𝑦), loss function, measures the error of predicting
𝑦 with ̂𝑦.
For quadratic loss, 𝐿(𝑦, ̂𝑦) = (𝑦 − ̂𝑦)2, 𝜇(𝑥) is the regression
function:

𝜇(𝑥) = 𝔼(𝑌 ∣ 𝑋 = 𝑥)
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Unsupervised learning

It aims at learning relationships and structure from the
observed data.

Probabilistic model:
Variables of interest: 𝑋 = (𝑋1, … , 𝑋𝑝).
Data 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝) , 𝑖 = 1, … , 𝑛 i.i.d. from the random
variable

𝑋 = (𝑋1, … , 𝑋𝑝) ∼ Pr(𝑋).
Pr(𝑋) denotes the probability distribution of 𝑋.

If 𝑋 is continuous, Pr(𝑋) is the probability density function of
𝑋.

Main interest: To infer properties of Pr(𝑋).
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Specific problems in unsupervised learning:

Estimating directly the density function Pr(𝑥) :
Density estimation (histogram, kernel densities, Gaussian MM)

Detecting homogeneous subpopulations 𝐶1, … , 𝐶𝑘 s.t.:
Pr(𝑥) = ∑𝑘

𝑗=1 𝛼𝑗 Pr (𝑥 ∣ 𝐶𝑗), 𝛼𝑗 ≥ 0, ∑𝑗 𝛼𝑗 = 1.
Clustering (hierarchical clustering, 𝑘-means, …)

Finding low-dimensional hyper-planes or hyper-surfaces
(manifolds) in ℝ𝑝 around which the probability Pr(𝑥) is
concentrated.

Dimensionality reduction (PCA, MDS, Manifold learning …)

Proposing generative probabilistic models for 𝑋, depending on
low-dimensional unobservable random variables 𝐹 .

Extraction of latent variables (Factor Analysis, …)
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Statistical Decision Theory
The prediction problem can be written as a decision problem
which can be casted in the setting of Statistical Decision
Theory.

Let (𝑋, 𝑌 ) be a r.v. with support 𝒳 × 𝒴 ⊆ ℝ𝑝 × ℝ.
Prediction problem: To look for a prediction function
ℎ ∶ 𝒳 ↦ 𝒴 such that ℎ(𝑋) is close to 𝑌 in some sense.

The (lack of) closeness between ℎ(𝑋) and 𝑌 is usually
measured by a loss function 𝐿(𝑌 , ℎ(𝑋)).

For instance, the squared error loss is
𝐿(𝑌 , ℎ(𝑋)) = (𝑌 − ℎ(𝑋))2.
𝐿(𝑌 , ℎ(𝑋)) is a r.v., with expected value
EL(ℎ) = 𝔼(𝐿(𝑌 , ℎ(𝑋))), called expected loss, that only
depends on ℎ.

Decision problem: To find the prediction function ℎ ∶ 𝒳 ↦ 𝒴
that minimizes the expected loss.
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Bayes rule
Denote by Pr(𝑋,𝑌 )(𝑥, 𝑦) the joint probability distribution of
(𝑋, 𝑌 ).
Observe that, for any ℎ ∶ 𝒳 ↦ 𝒴 a lower bound for EL(ℎ)
can be set as follows:

EL(ℎ) = 𝔼(𝐿(𝑌 , ℎ(𝑋)))

= ∫
𝒳×𝒴

𝐿(𝑦, ℎ(𝑥)) 𝑑 Pr(𝑋,𝑌 )(𝑥, 𝑦)

= ∫
𝒳

(∫
𝒴

𝐿(𝑦, ℎ(𝑥)) 𝑑 Pr𝑌 ∣𝑋=𝑥(𝑦)) 𝑑 Pr𝑋(𝑥)

= ∫
𝒳

𝔼(𝐿(𝑌 , ℎ(𝑥)) ∣ 𝑋 = 𝑥) 𝑑 Pr𝑋(𝑥)

≥ ∫
𝒳

min
𝑦∈𝒴

𝔼(𝐿(𝑌 , 𝑦) ∣ 𝑋 = 𝑥) 𝑑 Pr𝑋(𝑥)

= EL (ℎ𝐵) .
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From the previous bound: EL(ℎ) ≥ EL (ℎ𝐵) , it follows that,
given a loss function 𝐿(𝑦, ℎ(𝑥)) no prediction function can be
better than the Bayes rule, or equivalently, that
The optimal prediction function is the Bayes rule or Bayes
classifier defined as:

ℎ𝐵(𝑥) = arg min
𝑦∈𝒴

𝔼(𝐿(𝑌 , 𝑦) ∣ 𝑋 = 𝑥).
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The regression problem
Let (𝑋, 𝑌 ) be a (𝑝 + 1)-dimensional random variable, with
𝑌 ∈ ℝ.
The regression problem: To predict 𝑌 from known values of
𝑋.

The most common (and convenient) approach is to adopt as
loss function is the squared error loss:
𝐿(𝑌 , ℎ(𝑋)) = (𝑌 − ℎ(𝑋))2 .

Expected loss known as Prediction Mean Squared Error,
(PMSE):

PMSE(ℎ) = 𝔼 ((𝑌 − ℎ(𝑋))2) .

The Bayes rule in this case is

ℎ𝐵(𝑥) = arg min
𝑦∈𝒴

𝔼 ((𝑌 − 𝑦)2 ∣ 𝑋 = 𝑥) .
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Observe that, for any 𝑦 ∈ 𝒴 one can decompose the
conditional expectation of the squared deviation between 𝑌
and 𝑦ℎ given 𝑋 = 𝑥, 𝔼 ((𝑌 − 𝑦)2 ∣ 𝑋 = 𝑥) in such a way
that:

𝔼 ((𝑌 − 𝑦)2 ∣ 𝑋 = 𝑥) =
= 𝔼 (((𝑌 − 𝔼(𝑌 ∣ 𝑋 = 𝑥)) + (𝔼(𝑌 ∣ 𝑋 = 𝑥) − 𝑦))2 ∣ 𝑋 = 𝑥)
= 𝔼 ((𝑌 − 𝔼(𝑌 ∣ 𝑋 = 𝑥))2 ∣ 𝑋 = 𝑥) + (𝔼(𝑌 ∣ 𝑋 = 𝑥) − 𝑦))2⏟⏟⏟⏟⏟⏟⏟⏟⏟

≥0
+ 2(𝔼(𝑌 ∣ 𝑋 = 𝑥) − 𝑦)𝔼(𝑌 − 𝔼(𝑌 ∣ 𝑋 = 𝑥) ∣ 𝑋 = 𝑥)

≥ 𝔼 ⎛⎜
⎝

(𝑌 − 𝔼(𝑌 ∣ 𝑋 = 𝑥)⏟⏟⏟⏟⏟
ℎ𝐵(𝑥)

)2 ∣ 𝑋 = 𝑥⎞⎟
⎠
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Optimal predictor in regression

From the previous development it yields that, for regression
problems, the Bayes rule is the conditional expectation of 𝑌
given 𝑋 = 𝑥,

ℎ𝐵(𝑥) = 𝔼(𝑌 ∣ 𝑋 = 𝑥),

It is also known as regression function of 𝑌 over 𝑥 and is
usually denoted by

𝑚(𝑥) = 𝔼(𝑌 ∣ 𝑋 = 𝑥).
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Parametric regression

Parametric regression models assume that 𝑚(𝑥) is known
except for a finite number of unknown parameters,

𝑚(𝑥) ≡ 𝑚(𝑥; 𝜃), 𝜃 ∈ Θ ⊆ ℝ𝑞,

For instance, the multiple linear regression model postulates
that 𝑚(𝑥) = 𝛽0 + 𝑥⊤𝛽1, with unknown parameters
𝛽0 ∈ ℝ, 𝛽1 ∈ ℝ𝑝.

A training sample, 𝑆 = {(𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛)}, i.i.d. from
(𝑋, 𝑌 ), is used to estimate the parameter 𝜃.
In this case ℎ𝑆(𝑥) = 𝑚(𝑥; ̂𝜃), where ̂𝜃 = ̂𝜃(𝑆) is the
estimation of 𝜃 from sample 𝑆.
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Least squares estimation

A usual way to estimate 𝜃 in parametric models is by least
squares:

̂𝜃 = arg min
𝜃∈Θ

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑚 (𝑥𝑖; 𝜃))2

The regression function 𝑚(𝑥) is linear in 𝑥.
It can be shown that, independently of the distributions, ̂𝜃 is
the Best Linear Unbiased Estimator (BLUE) of 𝜃.
Assuming joint normality for 𝑋 and 𝑌 the LS-estimator is
equivalent to the maximum likelihood estimator of 𝜃
In this case, the model is 𝑌 = 𝑚(𝑋) + 𝜀, where 𝜀 is an
additive noise normally distributed with zero mean and
independent from 𝑋, also normally distributed.
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Least squares estimation and prediction errors

The LS estimator ̂𝜃 minimizes the prediction error, RSS, in the
training sample.

That is, the Residual Sum of Squares,

RSS(𝜃) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑚 (𝑥𝑖; 𝜃))2 ,

takes its minimum value when 𝜃 = ̂𝜃

err = RSS( ̂𝜃) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑚 (𝑥𝑖; ̂𝜃))
2
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Different types of prediction error

RSS(𝜃) is the prediction error a theoretical quantity, based on
the training sample, that needs to be estimated.

err, known as the training error or the apparent error, is an
approximation to RSS(𝜃).
We are interested in the error associated when predicting a
new observation, that is the Prediction Mean Squared Error
(PMSE)

PMSE(𝜃) = 𝔼 ((𝑌𝑛+1 − 𝑚 (𝑥𝑖; 𝜃))2) ,

err is an optimistic estimation of the in an observation of
(𝑋𝑛+1, 𝑌𝑛+1) independent from the training sample,
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err and PMSE are not the same

In some cases such as in linear regression err is a good
approximation to min𝜃∈ℝ𝑞 PMSE(𝜃)
But, when the parametric family 𝑚(𝑥; 𝜃), 𝜃 ∈ Θ ⊆ ℝ𝑞, is too
flexible:

err < PMSE( ̂𝜃) ≠ min
𝜃∈ℝ𝑞

PMSE(𝜃)

This is the case in non-parametric regression and in many
machine learning algorithms. (Example: 𝑘-nearest neighbors
regression, where the tuning parameter is 𝑘 ).

We will talk later in the course about cross-validation and
tuning parameters.
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k nearest-neighbors regression

K-NN is a flexible approach to regression or classification that,
instead of relying on a global model based on all observations
models each observation locally based on its nearest neighbors.

The 𝑘 nearest-neighbor estimator of 𝑚(𝑡) = 𝐸(𝑌 ∣ 𝑋 = 𝑡) is:

𝑚̂(𝑡) = 1
|𝑁𝑘(𝑡)| ∑

𝑖∈𝑁𝑘(𝑡)
𝑦𝑖,

where 𝑁𝑘(𝑡) is the neighborhood of 𝑡 defined by the 𝑘 closest
points 𝑥𝑖 in the training sample.

Closeness is defined according to a previously chosen distance
measure 𝑑(𝑡, 𝑥), for instance, the Euclidean distance.
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K-NN is flexible or way too flexible

K-NN regression is is a great real-world example of how model
flexibility impacts training error vs. prediction error:

When 𝑘=1 the model memorizes training data, leading to zero
training error.

However, for a new test observation, predictions are highly
unstable (high variance): PMSE( ̂𝜃) ≫ err.

As 𝑘 increases, the model becomes less flexible, reducing
variance but increasing bias.

The optimal 𝑘 balances both, minimizing PMSE

Conclusion: Overly flexible models, like small 𝑘 in 𝑘-NN,
cause training error to be misleading.
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Practice session

The R notebook knn_regr.Rmd illustrates the advantages
and drawbacks of K-NN regression using R.

Run along it and experiment with different settings.
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The classification problem

Let (𝑋, 𝑌 ) be a r.v. with support 𝒳 × 𝒴 ⊆ ℝ𝑝 × {1, … , 𝐾}.
We want to predict 𝑌 from observed values of 𝑋.

The loss function in this case can be represented by a 𝐾 × 𝐾
matrix 𝐿, that will be zero on the diagonal and nonnegative
elsewhere.

The element (𝑗, 𝑘) of 𝐿 is 𝐿(𝑗, 𝑘) : the price paid for
classifying in class 𝑘 an observation belonging to class 𝑗.
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The zero-one loss function
A common loss function for classification is the zero-one loss
function is used, where all misclassifications are charged a
single unit.
With the 0-1 loss function the Bayes rule is

ℎ𝐵(𝑥) = arg min
𝑦∈𝒴

𝔼 (𝐿0−1(𝑌 , 𝑦) ∣ 𝑋 = 𝑥)

= arg min
𝑘∈{1,…,𝐾}

𝐾
∑
𝑗=1

𝐿0−1(𝑗, 𝑘) Pr(𝑌 = 𝑗 ∣ 𝑋 = 𝑥)

= arg min
𝑘∈{1,…,𝐾}

(1 − Pr(𝑌 = 𝑘 ∣ 𝑋 = 𝑥))

= arg max
𝑘∈{1,…,𝐾}

Pr(𝑌 = 𝑘 ∣ 𝑋 = 𝑥).

In this context the Bayes rule is known as the Bayes classifier,
and says that we classify to the most probable class,
conditional to the observed value 𝑥 of 𝑋.
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The problem of binary classification
In the binary classification problem: 𝒴 = {0, 1}. Then
(𝑌 ∣ 𝑋 = 𝑥) ∼ Bernoulli(𝑝 = 𝑝(𝑥) = Pr(𝑌 = 1 ∣ 𝑋 = 𝑥) =
𝔼(𝑌 ∣ 𝑋 = 𝑥)).
The Bayes classifier is

ℎ𝐵(𝑥) = { 1 if 𝑝(𝑥) ≥ 1/2
0 if 𝑝(𝑥) < 1/2

As 𝑝(𝑥) is unknown, we use a training sample to estimate it.

Let (𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛) be 𝑛 independent realizations of
(𝑋, 𝑌 ).
Given an estimation ̂𝑝(𝑥) of the regression function 𝑝(𝑥), the
estimated version of the Bayes classifier is

ℎ𝑆 (𝑥𝑛+1) = { 1 if ̂𝑝 (𝑥𝑛+1) ≥ 1/2
0 if ̂𝑝 (𝑥𝑛+1) < 1/2

In practice, cut points different from 1/2 can be used.
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Parametric estimation in binary classification
In parametric modeling it is assumed that
𝑝(𝑥) = Pr(𝑌 = 1 ∣ 𝑋 = 𝑥) is known except for a finite
number of unknown parameters,

𝑝(𝑥) ≡ 𝑝(𝑥; 𝜃), 𝜃 ∈ Θ ⊆ ℝ𝑞.

The likelihood and log-likelihood are, respectively:

𝐿(𝜃) =
𝑛

∏
𝑖=1

Pr (𝑌𝑖 = 𝑦𝑖 ∣ 𝑋𝑖 = 𝑥𝑖) =
𝑛

∏
𝑖=1

𝑝 (𝑥𝑖; 𝜃)𝑦𝑖 (1 − 𝑝 (𝑥𝑖; 𝜃))1−𝑦𝑖 ,

ℓ(𝜃) = log 𝐿(𝜃) =
𝑛

∑
𝑖=1

(𝑦𝑖 log 𝑝 (𝑥𝑖; 𝜃) + (1 − 𝑦𝑖) log (1 − 𝑝 (𝑥𝑖; 𝜃))) .

Let ̂𝜃 = arg max𝜃∈Θ ℓ(𝜃) be the maximum likelihood
estimator of 𝜃.
Then ̂𝑝(𝑥) = 𝑝(𝑥; ̂𝜃) is used to define the classification rule.
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Other optimization criteria for binary classification

Maximum likelihood is not the only possibility for estimating 𝜃
in 𝑝(𝑥; 𝜃).
Alternatives:

Minimization of the misclassification error:

̂𝜃Miss = arg min
𝜃∈Θ

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝕀 {𝑝 (𝑥𝑖; 𝜃) ≥ 0.5})2 .

Least squares estimation:
̂𝜃𝐿𝑆 = arg min𝜃∈Θ ∑𝑛

𝑖=1 (𝑦𝑖 − 𝑝 (𝑥𝑖; 𝜃))2.
Least absolute deviation:

̂𝜃𝐿𝐴𝐷 = arg min𝜃∈Θ ∑𝑛
𝑖=1 |𝑦𝑖 − 𝑝 (𝑥𝑖; 𝜃)|.

Penalized version of these criteria, when the statistical model
𝑝(𝑥; 𝜃), 𝜃 ∈ ℝ𝑞, is too flexible.
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k-Nearest Neighbors (k-NN) for classification

k-Nearest Neighbors (k-NN) is a simple and effective
classification method.

It relies on the idea that similar instances should belong to the
same class.

Given a training set (𝒯) with labeled instances (𝑥𝑖, 𝑦𝑖),
To classify a new instance 𝑥, we:

1 Find the 𝑘 closest points 𝑥𝑖 to 𝑥.
2 Take the *majority vote$ of their corresponding labels 𝑦𝑖.

The decision boundary of k-NN is nonlinear and flexible, adapting
to local patterns in the data.
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k-NN Classification Model

The prediction for a new point (x) is given by:

𝑌 (𝑥) = 1
𝑘 ∑

𝑥𝑖∈𝑁𝑘(𝑥)
𝑦𝑖

where:

𝑁𝑘(𝑥) is the set of the 𝑘 nearest neighbors of 𝑥.
𝑦𝑖 are the corresponding labels (0 or 1 in binary classification).
Closeness is typically measured using Euclidean distance.

For classification:

If ̂𝑌 (𝑥) > 0.5, classify as Class 1.

Otherwise, classify as Class 0.
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Decision Boundaries - Linear Regression vs. k-NN

Linear regression fits a straight line decision boundary: (
𝑥𝑇 ̂𝛽 = 0.5 ).
Misclassifications occur because it assumes a linear
separation.
It does not capture local structures in the data.
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k-NN Decision Boundaries

Uses a majority vote among the 15 closest neighbors.
The decision boundary is much more flexible than linear
regression.
Adapts to local clusters of data.
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k-NN with k=1

1-NN assigns the label of the single closest training point.
Each point belongs to the nearest neighbor’s class: Voronoi
tessellation.
Decision boundary is highly irregular and sensitive to noise.
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Choosing k in k-NN

The parameter 𝑘 in K-NN reflects its flexibility
𝑘=1 leads to overfitting, that is, perfect accuracy on training
but poor generalization.

Larger 𝑘 smooths the decision boundary but might lose fine
details.

Trade-offs:
Small (k) : low bias, high variance.

Large (k) : high bias, low variance.

Optimal k is chosen via cross-validation (later in the course)
that aims at balancing the former error measures.
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Summary

k-NN is flexible and works well for complex decision
boundaries.
It is non-parametric and data-driven.
The choice of (k) is critical for generalization.
Compared to linear regression, k-NN adapts better to
nonlinear class distributions.
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𝑘-nn classification, in R

Follow the Rmd files

SimMixtNorm.Rmd and knn_class.Rmd
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Evaluating a binary classification rule

The explanation has been removed

Instead you can follow the slides of a talk on Biomarkers where
classification performance for bianty classifiers is discussed

Link to the slides

https://github.com/ASPteaching/Introduction2StatisticalLearning/blob/main/0-Course_presentation_and_Introduction/From%20Biomarker%20to%20Diagnostic%20Tests.pdf
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