Statistical Learning

Chapter 1. Overview of Supervised learning

Pedro Delicado and Alex Sanchez

UPC & UB



Outline

@ Supervised and Unsupervised learning
@ Statistical Decision Theory
© Regression Problems

@ Classification problems



Supervised and unsupervised learning
00000

Supervised Learning (the prediction problem)

o Let (X,Y) be a r.v. with support X' x ¥ C RP x R.
@ General supervised learning or prediction problem:

o Training sample: S = {(zy,y1), ..., (z,,,¥,)}, i-i.d. from
(X,Y).

e The goal is to define a function (possibly depending on the
sample) hg : X + Y such that for a new independent
observation (z,,,1,9,,1) . from which we only know z,,,, it
happens that:

Ups1 = hg(z,,1) is close to y, . (in some sense).
e Function hg is called generically a prediction function. (or

classification function or regression function, depending on the
case).
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Classification and Regression problems

The prediction function hg is said to describe a classification or a
regression problem depending on the case.

e If Y CR (or Y an interval) we have a standard regression
problem.

o Example: Relating Salary and demographic variables

o If Y ={0,1} (or, also, ¥ = {—1,1} ) we have a problem of
binary classification or discrimination.

o Example: Predicting if a COVID patient will require (or not)
Icu

K
o IfYy={1,...,K} (or ¥ = {y € {0,1}% Do Yk = 1})
we face a of K classes classification problem.

e Example: Classifying a tumor into one of many types
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Supervised learning

@ Probabilistic model for supervised learning
e Response variable Y.

o Explanatory variables (features) X = (X,,..., X,).

o Data (z; = (;1,..., %) %) i = 1,...,n iid. from the
random variable

(X = (X1,.,X,),Y) ~Pr(X,Y)

e Pr(X,Y) denotes the joint distribution of X and Y.

o When this joint distribution is continuous, Pr(X,Y’) is the
joint probability density function.
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@ Main interest is predicting Y from X.

o Given the probabilistic model it can be re-stated as learning
the conditional distribution Pr(Y | X).

@ In practice we focus on learning a conditional location
parameter.

u@%=M%m£@OCMIX=w%

where L(y, y), loss function, measures the error of predicting
y with ¢.
e For quadratic loss, L(y, ) = (y — 4)?, u(z) is the regression

function:
wz) =EY | X =2z)
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Unsupervised learning

@ It aims at learning relationships and structure from the
observed data.

@ Probabilistic model:

e Variables of interest: X = (Xl,...,Xp).

o Data x; = (2;y,...,%;,) ,i = 1,...,n i.i.d. from the random
variable
X = (X, .., X,) ~ Pr(X).

e Pr(X) denotes the probability distribution of X.

o If X is continuous, Pr(X) is the probability density function of
X.

@ Main interest: To infer properties of Pr(X).
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Specific problems in unsupervised learning:

e Estimating directly the density function Pr(z) :
o Density estimation (histogram, kernel densities, Gaussian MM)
@ Detecting homogeneous subpopulations C', ..., C}, s.t.:
Pr(z) = 25:1 a; Pr (z | Cj), a; >0, Zj a; = 1.
o Clustering (hierarchical clustering, k-means, ..)

e Finding low-dimensional hyper-planes or hyper-surfaces
(manifolds) in RP around which the probability Pr(z) is
concentrated.

e Dimensionality reduction (PCA, MDS, Manifold learning ...)

@ Proposing generative probabilistic models for X, depending on
low-dimensional unobservable random variables F'.

o Extraction of latent variables (Factor Analysis, ...)
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Statistical Decision Theory

@ The prediction problem can be written as a decision problem
which can be casted in the setting of Statistical Decision
Theory.

o Let (X,Y) be a r.v. with support X' x ¥ C RP x R.

@ Prediction problem: To look for a prediction function
h: X + Y such that h(X) is close to Y in some sense.

@ The (lack of) closeness between h(X) and Y is usually
measured by a loss function L(Y, h(X)).

e For instance, the squared error loss is
LY, h(X)) = (Y — h(X))*.

o L(Y,h(X)) is a r.v., with expected value
EL(h) = E(L(Y,h(X))), called expected loss, that only
depends on h.

@ Decision problem: To find the prediction function h: X' — Y
that minimizes the expected loss.
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Bayes rule

o Denote by Pr(y y(z,y) the joint probability distribution of
(X,Y).

@ Observe that, for any h: X'+ Y a lower bound for EL(h)
can be set as follows:

EL(h) = E(L(Y, h(X)))

:1/ Ly, h(x)) dPr x v (x,7)
XxY

:/ (/L(y,h(x))dpryx_x(y)> dPry(x)
X Y

:Aﬁ@&ﬂ@M\X=@dﬁﬂ@

> [ minE(L(Y,y) | X = z) dPry(x)
v yey
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e From the previous bound: EL(h) > EL (hg), it follows that,
given a loss function L(y, h(z)) no prediction function can be
better than the Bayes rule, or equivalently, that

@ The optimal prediction function is the Bayes rule or Bayes
classifier defined as:

hg(z) =argminE(L(Y,y) | X = x).
yey
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The regression problem

o Let (X,Y) be a (p+ 1)-dimensional random variable, with
Y eR.

@ The regression problem: To predict Y from known values of
X.

@ The most common (and convenient) approach is to adopt as
loss function is the squared error loss:
LY, h(X)) = (Y — h(X))* .

@ Expected loss known as Prediction Mean Squared Error,
(PMSE):
PMSE(h) = E((Y —h(X))?).

@ The Bayes rule in this case is

hg(z) =argminE (Y —y)? | X = z).

yey
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@ Observe that, for any y € Y one can decompose the
conditional expectation of the squared deviation between Y
and yh given X =z, E((Y —y)? | X = ) in such a way
that:

E((Y —9)? | X =a) =
SE((Y—E(Y | X =)+ (E(Y | X =) —9)? | X =)
SE((Y —E(Y [ X =2)? | X =) + (E(V | X =) —y))

FAEY [ X =2)— g)E(Y —E(Y | X = 2) | X = 2)

>[(w[w'XxWXx)

hp(z)



The regression problem
00e00000000

Optimal predictor in regression

@ From the previous development it yields that, for regression
problems, the Bayes rule is the conditional expectation of Y
given X =z,

hp(z) = E(Y | X = 2),

@ It is also known as regression function of Y over x and is
usually denoted by

m(zx) =EY | X =x).
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Parametric regression

e Parametric regression models assume that m(x) is known
except for a finite number of unknown parameters,

m(x) =m(z;0),0 € © C RY,

@ For instance, the multiple linear regression model postulates
that m(z) = B, + xTﬁl, with unknown parameters
Bo €R, B, € R

e A training sample, S = {(xy,94), ..., (z,,,¥y,,)}, i.i.d. from
(X,Y), is used to estimate the parameter 6.

@ In this case hg(x) = m(x; 6), where 6 = 6(S) is the
estimation of 8 from sample S.
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Least squares estimation

@ A usual way to estimate 6 in parametric models is by least

squares:
n

0 =argmin Y (y, —m (2;;0))"

@ The regression function m(x) is linear in .

@ It can be shown that, independently of the distributions, g is
the Best Linear Unbiased Estimator (BLUE) of 6.

@ Assuming joint normality for X and Y the LS-estimator is
equivalent to the maximum likelihood estimator of 6

e In this case, the model is Y = m(X) + ¢, where ¢ is an
additive noise normally distributed with zero mean and
independent from X, also normally distributed.
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Least squares estimation and prediction errors

@ The LS estimator 6 minimizes the prediction error, RSS, in the
training sample.

@ That is, the Residual Sum of Squares,

RSS(# i ;—m(x; 9)2

takes its minimum value when 8 = 60

o = 158(0) = 3 (s~ m (210

i=
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Different types of prediction error

@ RSS(6) is the prediction error a theoretical quantity, based on
the training sample, that needs to be estimated.

e err, known as the training error or the apparent error, is an
approximation to RSS(6).

@ We are interested in the error associated when predicting a

new observation, that is the Prediction Mean Squared Error
(PMSE)

PMSE(§) = E ((Y —m (mi;e))2> ;

n

@ “err is an optimistic estimation of the in an observation of

(X,41,Y,.1) independent from the training sample,
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and PMSE are not the same

@ In some cases such as in linear regression err is a good
approximation to min,.ps PMSE(6)

@ But, when the parametric family m(z;0),0 € © C RY, is too
flexible:
err < PMSE(f) # min PMSE(6)

0cRa

@ This is the case in non-parametric regression and in many
machine learning algorithms. (Example: k-nearest neighbors
regression, where the tuning parameter is k ).

@ We will talk later in the course about cross-validation and
tuning parameters.
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k nearest-neighbors regression

@ K-NN is a flexible approach to regression or classification that,
instead of relying on a global model based on all observations
models each observation locally based on its nearest neighbors.

@ The k nearest-neighbor estimator of m(t) = E(Y | X =1t) is:

. 1
m(t) = IN.(D)] Z Yis

1EN, (1)

where N, (%) is the neighborhood of t defined by the k closest
points x; in the training sample.

@ Closeness is defined according to a previously chosen distance
measure d(t,x), for instance, the Euclidean distance.
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K-NN is flexible or way too flexible

@ K-NN regression is is a great real-world example of how model
flexibility impacts training error vs. prediction error:

e When k=1 the model memorizes training data, leading to zero
training error.

o However, for a new test observation, predictions are highly

unstable (high variance): PMSE(#) > err.

e As k increases, the model becomes less flexible, reducing
variance but increasing bias.

e The optimal k balances both, minimizing PMSE

@ Conclusion: Overly flexible models, like small k in k-NN,
cause training error to be misleading.
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Practice session

@ The R notebook knn_regr.Rmd illustrates the advantages
and drawbacks of K-NN regression using R.

@ Run along it and experiment with different settings.
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The classification problem

o Let (X,Y) be ar.v. with support ' x ¥ CRP x {1,...,K}.
@ We want to predict Y from observed values of X.

@ The loss function in this case can be represented by a K x K
matrix L, that will be zero on the diagonal and nonnegative
elsewhere.

o The element (j, k) of L is L(j,k) : the price paid for
classifying in class k an observation belonging to class j.
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The zero-one loss function

@ A common loss function for classification is the zero-one loss
function is used, where all misclassifications are charged a
single unit.

@ With the 0-1 loss function the Bayes rule is

hp(x) = argmi;l[E (Lo (Y,y) [ X =2)
yE<

K
=arg, min Y Lo k) Pr(Y =j| X =)

j=1
= in (1-Pr(Y=k|X=
arg, _min K}( r( | z))
— Pr(Y = k| X = 2).
arg, max, Pr( | X=2)

@ In this context the Bayes rule is known as the Bayes classifier,
and says that we classify to the most probable class,
conditional to the observed value z of X.
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The problem of binary classification

@ In the binary classification problem: ¥ = {0,1}. Then
(Y| X =2)~Bernoullil(p=p(z)=Pr(Y =1|X=2) =
EY | X =x)).

@ The Bayes classifier is

1 if pz)>1/2
hB(x):{o if §<x><1/2

@ As p(x) is unknown, we use a training sample to estimate it.

o Let (zy,41),...,(x,,¥,) be n independent realizations of
(X,Y).

e Given an estimation p(z) of the regression function p(x), the
estimated version of the Bayes classifier is

1 if 23($n+1) >1/2
hg ($n+1> = { 0 if f?(InJrl) <1/2
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Parametric estimation in binary classification

@ In parametric modeling it is assumed that
p(z) =Pr(Y =1| X = x) is known except for a finite
number of unknown parameters,

p(x) = p(z;0),0 € © C R

@ The likelihood and log-likelihood are, respectively:

) =log L(9) = 3 (y;logp (2,:6) + (1 — y,)lox (1 — p (2,36))

o Let § = arg maxg.g £(0) be the maximum likelihood
estimator of 6.

@ Then p(x) = p(z; é) is used to define the classification rule.
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Other optimization criteria for binary classification

@ Maximum likelihood is not the only possibility for estimating 6

in p(z;6).
@ Alternatives:
e Minimization of the misclassification error:

~ . n ] 2
Oies = arg{gg;(% —1{p(2;;0) > 0.5})".

o Least squares estimation:
Py . n 2
0ps = argmingg Zizl (y; —p(z;0))".
o Least absolute deviation:
Y . n
0rap = argming.g Zizl ly; — p (2;50)].
o Penalized version of these criteria, when the statistical model
p(x;0),0 € RY, is too flexible.



The classification problem
0000080000000 0

k-Nearest Neighbors (k-NN) for classification

k-Nearest Neighbors (k-NN) is a simple and effective
classification method.

It relies on the idea that similar instances should belong to the
same class.

e Given a training set (7°) with labeled instances (x;,v;),
@ To classify a new instance x, we:

@ Find the k closest points z; to .

@ Take the *majority vote$ of their corresponding labels y,.

The decision boundary of k-NN is nonlinear and flexible, adapting
to local patterns in the data.
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k-NN Classification Model

The prediction for a new point (x) is given by:

Zyz

x, €Ny (x)

where:

@ N (z) is the set of the k nearest neighbors of z.
@ y, are the corresponding labels (0 or 1 in binary classification).
@ Closeness is typically measured using Euclidean distance.

For classification:
o If V() > 0.5, classify as Class 1.

@ Otherwise, classify as Class 0.
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Decision Boundaries - Linear Regression vs. k-NN

Linear Regression of 0/1 Response

s cmeglin T

@ Linear regression fits a straight line decision boundary: (
T3 =05).

@ Misclassifications occur because it assumes a linear
separation.

@ It does not capture local structures in the data.
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@ Uses a majority vote among the 15 closest neighbors.
@ The decision boundary is much more flexible than linear

regression.
@ Adapts to local clusters of data.
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k-NN with k=1

@ 1-NN assigns the label of the single closest training point.

@ Each point belongs to the nearest neighbor's class: Voronoi
tessellation.

@ Decision boundary is highly irregular and sensitive to noise.
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Choosing k in k-NN

@ The parameter k in K-NN reflects its flexibility

e k=1 leads to overfitting, that is, perfect accuracy on training
but poor generalization.

e Larger k smooths the decision boundary but might lose fine
details.

o Trade-offs:
o Small (k) : low bias, high variance.
o Large (k) : high bias, low variance.

o Optimal k is chosen via cross-validation (later in the course)
that aims at balancing the former error measures.
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Summary

@ k-NN is flexible and works well for complex decision
boundaries.

o It is non-parametric and data-driven.

@ The choice of (k) is critical for generalization.

@ Compared to linear regression, k-NN adapts better to
nonlinear class distributions.
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k-nn classification, in R

Follow the Rmd files

SimMixtNorm.Rmd and knn_class.Rmd
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Evaluating a binary classification rule

@ The explanation has been removed

o Instead you can follow the slides of a talk on Biomarkers where
classification performance for bianty classifiers is discussed

e Link to the slides


https://github.com/ASPteaching/Introduction2StatisticalLearning/blob/main/0-Course_presentation_and_Introduction/From%20Biomarker%20to%20Diagnostic%20Tests.pdf
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